CYP2D6: Amitriptyline

AMI: amitriptyline, Clor: oral clearance, Css: steady state plasma concentration, EM: extensive metabolizer, IM: intermediate metabolizer, MR: metabolic ratio, NS: not statistically significant, NOR: nortriptyline, PM: poor metabolizer, S: statistically significant, UM: ultrarapid metabolizer.

Reference	Level of evidence	Clinical relevance	Effect	Remarks
ref. 1	3	IM: A	195 postmortem toxicology cases.	Conclusion authors:
Koski A et al.			13x PM, 60x IM, 108x EM, 14x	"Our study shows a concordance
CYP2D6 and		PM: A	UM. Concomitant use of CYP2D6	of AT metabolite patterns with
CYP2C19 genotypes			inhibitors varied.	CYP2D6 and CYP2C19 genotypes
and amitriptyline				in the presence of confounding
metabolite ratios in a			Compared to EM:	factors typical for postmortem
series of medicolegal				material. This result demonstrates
autopsies. Forensic			IM:	the feasibility of postmortem
Sci Int 2006 (158:177-			- MR AMI / (E)-10-nyaroyAMI	pharmacogenetic analysis and
63.			MP NOP / (E) 10 bydrow/AM	supports the dominant role of
DMID: 1602/108			- MR NOR / (E)-10-119010XyAMI	genes in drug metabolism.
1 WID: 10024190			-MR(E)-10-hydroxyNOR/(7)-10-	
			hvdroxyNOR decreased (S)	
			- MR (7)-10-hvdroxvAMI / (7)-10-	
			hvdroxvNOR decreased (S)	
			y - y (-)	
			PM:	
			- MR AMI / (E)-10-hydroyAMI	
			increased (S)	
			- MR NOR / (E)-10-hydroxyAMI	
			increased (S)	
			- MR (E)-10-hydroxyNOR / (Z)-10-	
			hydroxyNOR decreased (S)	
			- MR (Z)-10-hydroxyAMI / (Z)-10-	
			hydroxyNOR decreased (S)	
			- MR NOR / (E)-10-hydroxyNOR	
			Increased (S)	
			- MR NOR / (Z)-10-hydroxyAMI	

			increased (S) - MR (E)-10-hydroxyAMI / (Z) -10- hydroxyAMI decreased (S) - MR AMI / NOR decreased (S) The cause of death was a drug intoxication in 103 patients. In 63 cases AMI overdose was the primary cause of death of which 39 intentionally, 17 by accident and 7 unknown. The accidental intoxications were not associated with the PM-genotype (1x PM with low AMI plasma concentration, 9x IM, 6x EM, 1x UM). Covariate analyses for CYP2D6, CYP2C19, age, sex) revealed a dominant effect of CYP2D6 status on AMI- metabolism.	
ref. 2 Steimer W et al. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 2005;51:376-85.	3	IM: C	Prospective 'blinded' study with 50 patients, 32x EM, 17x IM, 1x UM. AMI 150 mg/day for 3 weeks. For 5 patients the AMI dose was adjusted during the study to 75 mg/day (n=1), 100 mg/day (n=3), 125 mg/day (n=1). Concomitant medication: 13x possibly a CYP2D6 inhibitor was prescribed. Compared to EM+UM: IM: - Percentage of patients with side-	Conclusion authors: "Combined pharmacogenetic testing for CYP2D6 and CYP2C19 identifies patients with low risk for side effects in amitriptyline therapy and could possibly be used to individualize antidepressive regimens and reduce treatment cost. Identification of genotypes associated with slightly reduced intermediate metabolism may be more important than currently anticipated"
PMID: 15590749			effects increased from 12.1% to 76.5% (S, 523%). This effect was	Plasmaconcentration NOR

			also seen in patients without	compared to EM:
			concomitant mediaction	
			influencing CYP2D6 (4.2% to	IM: 167-207%
			69.2%) (S, 1548%)	
			 Css NOR increased: 	Plasmaconcentration AMI + NOR
			- from 49.0 to 101.2 μg/l in	compared to EM:
			CYP2C19 IM+PM (S,	
			107%)	IM: 130-150%
			- from 65.0 to 108.4 μg/l	
			for CYP2C19 EM (S, 67%)	
			- Css (AMI + NOR) increased	
			- from 154.8 to 202.0 µg/l	
			for CYP2C19 IM+PM (S for	
			trend, 30%)	
			- from 134.7 to 201.9 µg/l	
			for CYP2C19 EM (S for	
			trend, 50%)	
			- No difference in therapeutic	
			response (NS)	
			NOR but not AMI. concentrations	
			correlated with side effects. Both	
			NOR and AMI concentrations did	
			not correlate with therapeutic	
			response	
ref. 3	3	IM [.] A	Identical to ref 2 but this paper	Conclusion authors.
Steimer W et al.	•		reports the results of the	
Allele-specific change			pharmacokinetic analyses	"CYP2D6 but not CYP2C19
of concentration and			- Significant differences in Css	correlates with the sum of both
functional gene dose			NOR ^a between different gene-	concentrations used to guide AT
for the prediction of			dose groups (Null alleles=0	therapy "
steady-state serum			decreased functional allele=0.5	
concentrations of			fully functional allele=1)	NOR plasma concentration.
amitrintyline and			Compared to EM.	Compared to EM
nortriptyline in				
CYP2C19 and			IM.	IM: 178-265%
CYP2D6 extensive			-0.5 vs 1.5; from 37.6 to	

and intermediate			66,8 µg/l per kg/mg (S,	AMI+NOR plasma concentration
metabolizers. Clin			78%)	compared to EM:
Chem 2004;50:1623-			- 0.5 vs. 2.0: from 25.2 to	
33.			66.8 µg/l per kg/mg (S,	IM: 120-170%
			165%)	
PMID: 15205367			- 1.0 vs. 2.0: from 25.2 to	
			48.2 µg/l per kg/mg (S,	
			91%)	
			Low EM vs. High EM:	
			- 1.5 vs. 2.0: from 25.2 to	
			37,6 µg/l per kg/mg (S,	
			49%)	
			- AMI + NOR Css is mainly	
			influenced by change in NOR	
			concentrations due to CYP2D6	
			polymorphisms.	
			$Css AMI + NOR^{a} is:$	
			- Gene dose 0.5; 101.6 µg/l per	
			ka/ma	
			- Gene dose 1.0: 89.9 µg/l per	
			ka/ma	
			- Gene dose 1.5 [.] 75.1 µg/l per	
			ka/ma	
			- Gene dose 2 0: 59 8 µg/l per	
			ka/ma	
			(g) (i) g	
			Note: Mean Css AMI + NOR and	
			NOR for the whole population	
			displayed the exact mean	
			concentration obtained for the	
			individuals with a CVP2D6 gene	
			dose of 1.5 and not a gene dose	
			of 2.0	
rof A	3	ΙΙΜ·ΔΔ	136 natients 3 with AML dose not	AMI + NOR plasma concentration
Grasmader K et al	0		reported 1 LIM 2 IM or FM Mean	compared to EM + IM.
Impact of			dose corrected Css AMI+NOP	
nolymorphisms of			was 0.61 ng/ml per mg AML Dose	
			was u.u i ny/ini per niy Awi. Duse	

cytochrome-P450			corrected Css in UMs was 6%	
isoenzymes 2C9,			increased compared to the mean.	
2C19 and 2D6 on				
plasma				
concentrations and				
clinical effects of				
antidepressants in a				
naturalistic clinical				
setting.				
Eur J Clin Pharmacol				
2004;60:329-36.				
PMID: 15168101				
ref. 5	3	IM: A	50 patients. 25-225 mg/day AMI	
Shimoda K et al. The			(0.46-5.18 mg/kg/day) for 2	
impact of CYP2C19			weeks. 8x 0 mutant alleles (EM	
and CYP2D6			genotype 1-1), 32x 1 mutant allele	
genotypes on			(29x EM (genotype 1-0.5) and 3x	
metabolism of			IM (genotype 1-0)), 10x 2 mutant	
amitriptyline in			alleles (all IM, genotype $0.5-0.5$	
Japanese psychiatric			(n=8) of 0,5-0 (n=2)).	
Patients. J Clin			Compared to EM:	
			Compared to EM.	
2002,22.371-8.			15.4.	
DMID: 12172336			MP NOP / (E) 10 bydroxyNOP	
FIMID. 12172550			increased from 0.73 to 1.31 (NS	
			70%)	
			The combined effect of sex and	
			the number of mutant CYP2D6	
			alleles explained 17 7% of the	
			observed variability in log (NOR /	
			(E)-10-hvdroxyNOR)	
			(_,,,,,,,	
			Note: gene duplications were not	
			assessed.	
ref. 6	3	IM: A	11 healthy nonsmokers. 50 mg	Conclusion authors:

Mellstrom B et al. Amitriptyline metabolism: association with debrisoquin hydroxylation in nonsmokers. Clin Pharmacol Ther 1986;39:369-71. PMID: 3956053		PM: A	AMI single dose. Clor was negatively correlated with urinary MR debrisoquine/4-hydroxy- desibroquine. Note: genotype not reported	"Our data suggest that there may be a common regulation of the hydroxylation of debrisoquin and the oxidative metabolism of amitriptyline in nonsmokers."
ref. 7 Bertilsson L et al. Extremely rapid hydroxylation of debrisoquine: a case report with implication for treatment with nortriptyline and other tricyclic antidepressants. Ther Drug Monit 1985;7:478-80. PMID: 4082245	2	UM: C	Patient receive AMI 150 mg/day. Plasma concentrations were 33 and 28 µg/l and 13 and <19 µg/l for AMI and NOR, respectively at t=3 and t=5 weeks after first AMI prescription. After an initial short improvement of the depression during AMI treatment, the patient became depressed again. The patient had previously been treated with NOR (300-500 mg/day) and was found to have an MR NORT / 10-hydroxyNORT of 0.13 indicating ultrarapid metabolism. No severe anticholinergic side effects were reported.	Conclusion authors: "Our patient developed low plasma levels of both AT and NT when she was treated with AT. There seem to be difficulties in optimizing the treatment of extremely rapid hydroxylators with all tricyclic antidepressants. In such cases it may be warranted to try a nontricyclic antidepressant, which is not metabolized by the debrisoquine hydroxylase."
ref. 8 Baumann P et al. Amitriptyline pharmacokinetics and clinical response: II.	3	IM: A PM: A UM: A	16 patients, 12x EM, 4x PM. AMI 75 mg/day for 2 days, followed by AMI 150 mg/day for 19 days. Compared to IM+EM+UM:	
Metabolic				

		1
polymorphism	PM:	
assessed by	- MR (hydroxyAMI +	
hydroxylation of	hydroxyNOR) / (AMI + NOR)	
debrisoguine and	decreased.	
mephenytoin.	- 2 PM had the highest (AMI +	
Int Clin	NOR) concentration	
Psychopharmacol	- PMs reported no excessive side	
1986.1.102-12	effects	
1000,11102 12.	- Clinical response could not be	
PMID: 3571939	predicted from hydroxylation	
1 11112: 007 1000	status or plasma concentrations of	
	the active components	
	the active components.	
	Correlation between MP of	
	desibroquine / hydroxy	
	desibroquine in urine and AMI +	
	metabolites in plasma:	
	- positive: AMI (S) and AMI + Nor	
	(S)	
	- Negative: hydroxyAMI / AMI (S),	
	hydroxyNOR/NOR (S),	
	(hydroxyAMI + hydroxyNOR) /	
	(AMI+NOR) (S), (hydroxyAMI +	
	hvdroxvNOR) / AMI (S)	
	, , , , , , , , , , , , , , , , , , ,	
	Note: genotype not reported	

* IM, EM and UM phenotypes are not separated by phenotyping. EM* therefore consists of IM+EM+UM. a adjusted for dose and bodyweight

	Groups at risk C	Concomitant use of a CYP2D6 inhibitor
--	------------------	---------------------------------------

Remarks

Date literature search: 22 June 2007

Both studies with genotyping and phenotyping were considered. If only phenotyping was used this is indicated by the line "Note: genotype not reported"

	Phenotype	Code	Gene-Drug Interaction	Action Required	Date
Decision DPWG	PM	3A	Yes	Yes	19 September
	IM	3C	Yes	Yes	2007
	UM	3C	Yes	Yes	

Action Pharmacy Technician	First prescription: Consult pharmacist
	Subsequent prescription: Dispense. If genotype was not previously known, consult pharmacist.
Action Pharmacist, Physician	PM: Insufficient data to allow calculation of dose adjustment. Select alternative drug (e.g.,
	citalopram, sertraline) or monitor amitriptyline and nortriptyline plasma concentration
	IM: Reduce dose to 75% of the recommended dose and monitor plasma concentration or select
	alternative drug (e.g., citalopram, sertraline)
	UM: Insufficient data to allow calculation of dose adjustment. Select alternative drug (e.g.,
	citalopram, sertraline) or monitor (E-10-hydroxy)amitriptyline plasma concentration. Be alert to
	reduced efficacy due to decreased amitriptyline plasma concentration. Be alert to increased
	concentrations of the active hydroxymetabolites. These are possibly cardiotoxic.

Considerations

- PM: There are insufficient data for PM. Theoretically a similar but enlarged effect of the effect reported for IMs can be anticipated. Selection of an alternative drug is recommended.
- IM: One of the studies reports an increase in the number of side effects for IMs. Therefore a dose reduction or selection of an alternative drug is recommended. The population size-weighted mean of the dose adjustments calculated for the individual papers is 71% of the recommended dose (based on AMI + NOR Css data). For clinical applicability this is translated to a reduction to 75% of the recommended dose.
- UM: There is a case report about failure of therapy with amitriptyline in an UM. There are insufficient data for UM to calculate a dose adjustment. Selection of an alternative drug is recommended.

Mechanism

Amitriptyline is metabolized to nortriptyline by CYP2C19 (N-demethylation). Both amitriptyline and nortriptyline are metabolized to their 10-hydroxy derivatives by CYP2D6. (mainly E-10-hydroxy derivatives). E-10-OH-amitriptyline has approximately 30% of the potency of amitriptyline. E-10-OH-nortriptyline has approximately 50% of the potency of nortriptyline. Amitriptyline is also metabolized by N-oxidation and N-glucurunodiation. Nortiptyline is metabolized by CYP2D6 and CYP2C19 to the inactive metabolite didesmethylamitriptyline (desmethylnortriptyline).