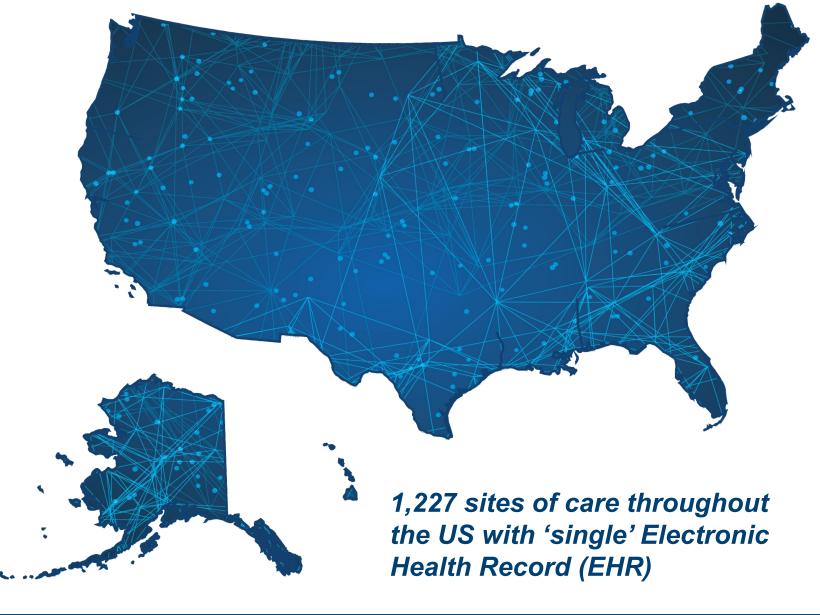
Implementing PGx testing in the Veterans Health Administration

Deepak Voora, MD

Executive Director, VA National Pharmacogenomics Program
National Oncology Program
Specialty Care Services
Durham VA Medical Center, Durham, NC

Agenda


- Veterans Health Administration (VHA) Overview
- Pharmacogenomics (PGx) Access
- PGx Implementation and Education
- PGx Population Health Management
- PGx Data Warehouse
- Summary and Future Direction

VHA Overview

- 168 Medical Centers
- 1,047 Outpatient Clinics
- **135** Community Living Centers
- 113 Domiciliary Rehabilitation Treatment Programs
- 60 Mobile Sites of Care
- 300 Readjustment Counseling (Vet) Centers
- 80 Mobile Sites of Care
- >9 Million Veterans receive care
- ~7 Million using pharmacy benefits

Why does VA need a dedicated program to implement PGx?

VA began piloting pre-emptive, panelbased PGx testing in 2019, catalyzed by a donation from Sanford Health to bring PGx to 40 pilot sites (2019-2024).

Goals

- Increase the value of PGx testing
- Reduce the barriers to using PGx testing

Lessons Learned

PGx implementation is a 'team-sport'

Prescribers from all disciplines are our number one customers

Pharmacists are necessary force-multipliers in implementing PGx

Pre-emptive PGx testing requires a different delivery model than traditional lab-testing

Implementation science is needed to design, evaluate, and improve PGx implementation

PGx testing funding and clinical decision support (CDS) are necessary but not sufficient to support widespread adoption

Build 'end-to-end' provider support for implementing PGx at any facility

Access to panel-based PGx testing for more than 40 medications

Learning community of practice

Educational materials to review testing and interpretation

Remote pharmacist support for direct patient care and population health management

Clinical decision support systems

Local PGx trained Pharmacist to lead the change in practice behavior

PGx trained pharmacist for post-testing consultation

Return of results to patients

Provider-friendly summary of PGx test results in EHR

Data warehouse

Build 'end-to-end' provider support for implementing PGx at any facility: Access

Access to panel-based PGx testing for more than 40 medications

Learning community of practice

Educational materials to review testing and interpretation

Remote pharmacist support for direct patient care and population health management

Clinical decision support systems

Local PGx trained
Pharmacist to lead
the change in
practice behavior

PGx trained pharmacist for post-testing consultation

Return of results to patients

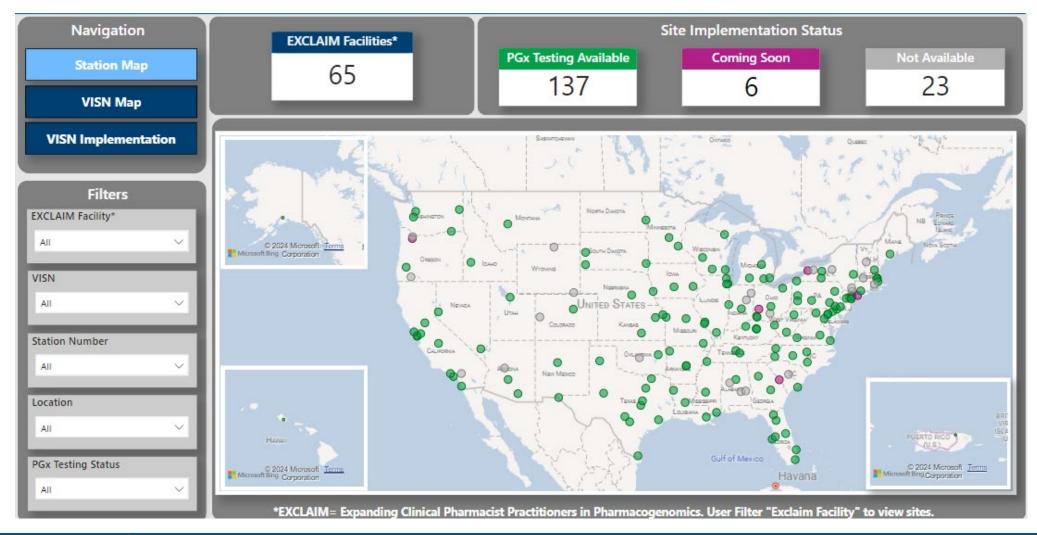
Provider-friendly summary of PGx test results in EHR

Data warehouse

Primary PGx Panel

Medications Informed by Panel [‡]				
Abacavir	Amitriptyline	Aripiprazole	Atazanavir	
Atomoxetine	Atorvastatin	Azathioprine	Belinostat	
Brexpiprazole	Capecitabine	Celecoxib	Citalopram	
Clobazam	Clomipramine	Clopidogrel	Codeine	
Dapsone	Desipramine	Deutetrabenzine	Dexlansoprazole	
Doxepin	Efavirenz	Eliglustat	Escitalopram	
Fluorouracil	Flurbiprofen	Fluvastatin	Fluvoxamine	
Fosphenytoin	Ibuprofen	lloperidone	Imipramine	
Lansoprazole	Lovastatin	Meloxicam	Mercaptopurine	
Methylene Blue	Metoclopramine	Nitrofurantoin	Nortriptyline	
Omeprazole	Ondansetron	Pantoprazole	Paroxetine	
Pegloticase	Phenytoin	Pimozide	Piroxicam	
Pitavastatin	Pitolisant	Pravastatin	Primaquine	
Rasburicase	Rosuvastatin	Sertraline	Simvastatin	
Siponimod	Tacrolimus	Tafenoquine	Tetrabenazine	
Thioguanine	Tramadol	Trimipramine	Valbenazine	
Venlafaxine	Voriconazole	Vortioxetine	Warfarin	

Genes	Alleles Tested [†]
ABCG2	c.421C (p.GLN141)
CYP2B6	*5, *6, *7, *18, *22
CYP2C cluster	g.96405502G
CYP2C19	*2, *3, *4, *5, *6, *7, *8, *9, *10, *16, *17, *22, *24, *25, *26, *35
CYP2C9	*2, *3, *4, *5, *6, *8, *11, *12, *13, *15, *16
CYP2D6	*2, *3, *4, *5, *6, *7, *8, *9, *10, *12, *14, *15, *17, *21, *29, *39, *41, *42, *49, *56, *59, *114, allele duplication
CYP3A5	*3, *6, *7
CYP4F2	*3
DPYD (NM_000110.4)	c.299_302del, c.557A>G (p.Y186C), c.703C>T (p.R235W), c.1129-5923C>G, c.1236G>A, c.1156G>T (p.E386*), c.1679T>G (p.I560S), c.1898del (p.P633Qfs), c.1905+1G>A, c.2846A>T (p.D949V), c.2983G>T (p.V995F)
G6PD	B, A, Asahi, Canton, Chatham, Cosenza, Mediterranean, Coimbra-Shunde, Vancouver, Kaiping, A-202A_376G, A- 968C_376G
HLA-B*57:01 screen	positive
NUDT15	*2, *3, *4, *5, *6, *7, *8, *9
SLCO1B1	*5, *14, *15, *37
TPMT	*2, *3A, *3B, *3C, *4, *11, *14, *15, *23, *29, *41
UGT1A1	*6, *27, *28, *36, *37
VKORC1 (NM_024006.5)	c1639G>A



Access to PGx testing

As of June 13, 2024

PGx Orders: Cumulative Volume & Provider Count

as of June 13, 2024

74340

Cumulative Orders

Count of PHASER Orders
Placed in Last 30 days

5860

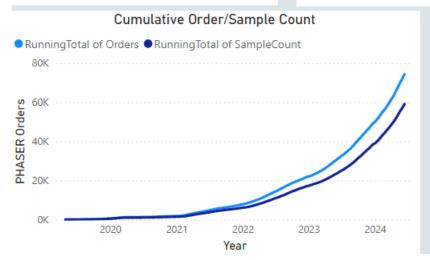
Compared to Previous 30-day Period 4/1/2019

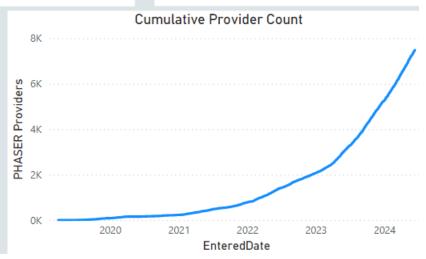
First Order Date

Ratio of PHASER Orders Placed per Provider in Last 30 days

3.20

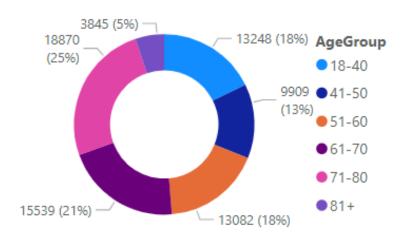
Compared to Previous 30-day Period 6/12/2024


Most Recent Order Date


Count of Unique Ordering Providers in Last 30 days

1934

Compared to Previous 30-day
Period



PGx Orders: Patient Demographics

as of June 13, 2024

Patient Age Group

Patient Race/Ethnicity

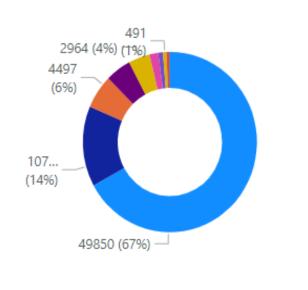
WHITE

(Blank)

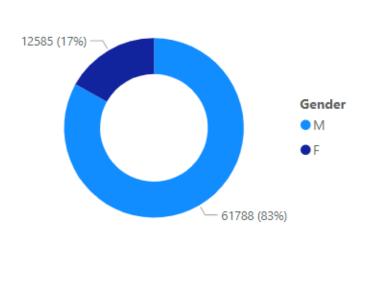
Unknown

Multiracial

AMERICAN I...


NATIVE HAW...

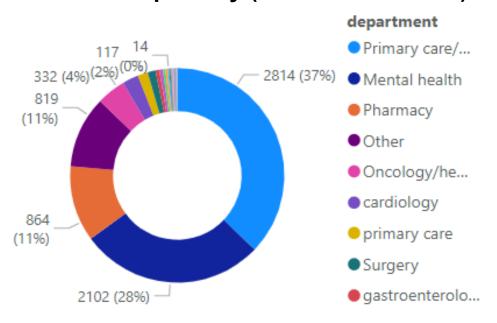
WHITE NOT ...

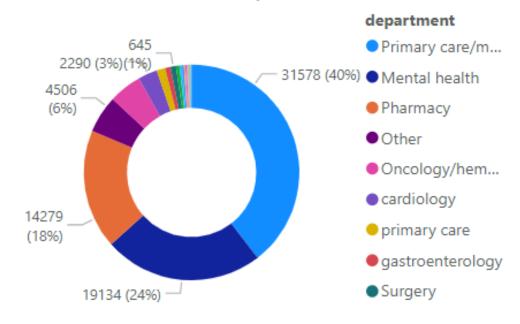

ASIAN

BLACK OR AF...

Hispanic or La...

Patient Gender




PGx Orders: Provider Specialties

as of June 13, 2024

Provider Specialty (Count of Provider)

Provider Specialty (Count of Orders)

Factors associated with uptake in PGx testing

Factors Associated with Obtaining a PGx Test Order: (n=24,073 cases and matched controls)

Abigail Silva, Deepak Voora, Rebekah Ryanne Wu, Brian Bartle, Catherine Chanfreau-Coffinier, Allison Hung, Corrine I. Voils (unpublished)

		OR	95% LL	95% UL	p-value
1	Sex				
	Female vs Male	1.00	0.95	1.05	NS
	Age (years)				
	18-39 vs 70+	1.65	1.53	1.78	***
2	40-49 vs 70+	1.39	1.30	1.49	***
ו בו	50-59 vs 70+	1.22	1.15	1.30	***
	60-69 vs 70+	1.07	1.01	1.12	*
acteristi	Race/Ethnicity				
₹	nH Black vs nH White	1.46	1.38	1.55	***
	Hispanic vs nH White	1.52	1.39	1.67	***
0	Other vs nH White	1.18	1.08	1.27	***
ן מ	Married				
	Yes vs No	1.10	1.06	1.14	***
	Area Deprivation Index Quar		1.00	1.14	
	4 vs 1	1.04	0.98	1.10	NS
	3 vs 1	1.04	1.00	1.11	NS
	2 vs 1	1.06	1.00	1.13	*
	missing vs 1	1.34	1.19	1.51	***
	Distance to VHA (miles)	1.54	1.15	1.51	
	>45 vs <= 15	0.91	0.86	0.96	**
	PHASER education mailer- S		0.00	0.50	
ļ	Yes vs No	1.09	1.00	1.18	*
	Charlson Comorbidity Index		1.00	1110	
	1 vs 0	0.88	0.83	0.93	***
	2 vs 0	0.92	0.86	0.98	*
	3 vs 0	0.85	0.79	0.91	***
	4+ v 0	0.87	0.81	0.92	***
	Depression Diagnosis				
	Yes vs No	1.22	1.17	1.28	***
	PTSD Diagnosis				
	Yes vs No	1.05	1.00	1.10	NS
	Has PGx Drug Allergy				
	Yes vs No	1.40	1.33	1.47	***
	Unique PGx Prescriptions ^b				
/	2+ vs 0	1.18	1.11	1.24	***

٨	Provider sex					
Characteristics>	Female vs Male	1.15	1.11	1.20	***	
	Provider age (years)					
	18-39 vs 60+	1.51	1.42	1.60	***	1
acte	40-49 vs 60+	1.62	1.53	1.72	***	abla
Jare	50-59 vs 60+	1.31	1.24	1.39	***	
	Provider type					
der	NP/PA vs Physician	1.08	1.05	1.12	***	1
ľoVi	Pharmacist vs Physician	1.45	1.39	1.50	***	1
<patient's provider<="" td=""><td>Provider caseload (Tertile)^c</td><td></td><td></td><td></td><td></td><td></td></patient's>	Provider caseload (Tertile) ^c					
ent	Middle vs Low	0.97	0.93	1.00	NS	1
ati	High vs Low	0.91	0.87	0.95	***	
-	PHASER Educational Mailer O	pt In				'
V	Yes vs No	2.74	2.58	2.90	***	

Build 'end-to-end' provider support for implementing PGx at any facility: Implementation and Education

Access to panel-based PGx testing for more than 40 medications

Learning community of practice

Educational materials to review testing and interpretation

Remote pharmacist support for direct patient care and population health management

Clinical decision support systems

Local PGx trained
Pharmacist to lead
the change in
practice behavior

PGx trained pharmacist for post-testing consultation

Return of results to patients

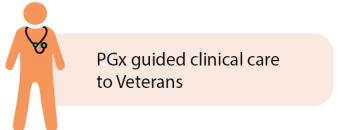
Provider-friendly summary of PGx test results in EHR

Data Warehouse

Enhancing education and implementation through a PGx trained Clinical Pharmacist Practitioner (CPP)

2019-2023

- Framework for PGx testing
- Limitations to educational outreach
- Lower than anticipated uptake
- Main focus: Pre-emptive PGx testing


2023 and Beyond

- Increase adoption within and across facilities
- Knowledge transfer to frontline providers/pharmacists
- Main focus: Reactive PGx testing

CPP Roles and Responsibilities

Clinical Workflows Overview

SMEs across clinical specialties:

- Identify specific patient subgroups who are more likely to benefit from PGx in the near term
- Collaborate on when and how to integrate PGx so that results are available when needed
- Guide clinical decision support tools:
 - Drug gene alerts
 - Population health management
 - Therapy and dosing recommendations

PGx clinical workflows include:

- Metrics to measure uptake and appropriate use of PGx testing
- Resources consisting of pre- and posttest dashboards, EMR clinical decision support tools, and educational material targeting prescribers

CPPs implement PGx clinical workflows:

- Utilize implementation resources including toolkit, PowerPoint presentation, fact sheet, and CPIC guidelines available in a single package online
- Apply PGx test results to support care coordination

Implementation strategies are infused into the foundation of each clinical pathway:

- Increase demand and mandate change
- Train and educate providers and stakeholders
- Implementation facilitation

- Revise professional roles
- Audit-and-feedback
- Data warehousing

- Change record systems
- Prepare patients to be active participants
- Centralized technical assistance

Road to Implementation

Phase 1: Clinical Workflow Development

- SMEs identify patient population and draft clinical workflow
- Stakeholder buy-in from SMEs
- Assess operational and technical feasibility, clinical workflow metrics and dashboard feasibility

Phase 2: Implementation Planning

- Finalize implementation resources (implementation toolkit, implementation PowerPoint, flow map, in-service PowerPoint)
- SMEs test dashboard for functionality to ensure patients in need of testing and those with existing test results are identified
- EHR clinical decision support:
 - Pre-test
 - Post-test

Phase 3: Clinical Workflow Implementation

- Local leadership, provider, and pharmacist education
- In-services
- 1:1 education targeted at front line providers

Monitoring of Implementation

Reports with metrics for percentage uptake and concordance at provider, facility, VISN, regional level

PGx Clinical Workflow Updates

P2Y12 'Escalation' and 'Descalation'

Focus: Improve antiplatelet efficacy and safety following percutaneous coronary intervention

Launch: February 2024

Implementation: 34 systems

DPYD and Fluoropyrimidines

Focus: Medication safety

Launch: April 2024

Implementation: 49 system

Resources supporting CPPs with workflow implementation:

Implementation toolkit

Implementation presentation, In-service presentation

Data tracking

Provider-Facing Fact sheets

Third party PGx educational opportunities through University of Pittsburg Test2Lern

Current and Future Clinical Workflows

SME Workgroup	Clinical Pathway	Release Date or Anticipated Release Date
Cardiovascular	Cardiac Cath Lab	February 2024
Oncology	DPYD and Fluoropyrimidines	April 2024
Oncology	TPMT, NUDT15 and Mercaptopurine for Acute Lymphoblastic Leukemia (ALL)	June 2024
Mental Health	Interventional Psychiatry for Treatment of Depression	August 2024
Primary Care	Depression Management	October 2024
Neurology	Carbamazepine and HLA-B	December 2024
Rheumatology	Thiopurines	FY25
Transplant	Tacrolimus and CYP3A5	FY25
Chronic Pain	TBD	FY25
Acute Pain/Anesthesia	TBD	FY25
Infectious Disease	TBD	FY25
Oncology	Oncology Irinotecan/Irinotecan-liposomal and UGT1A1 homozygous/PM	
Mental Health	Antipsychotics	FY25

Build 'end-to-end' provider support for implementing PGx at any facility: Population Health Management

Access to panel-based PGx testing for more than 40 medications

Learning community of practice

Educational materials to review testing and interpretation

Remote pharmacist support for direct patient care and population health management

Clinical decision support systems

Local PGx trained
Pharmacist to lead
the change in
practice behavior

PGx trained pharmacist for post-testing consultation

Return of results to patients

Provider-friendly summary of PGx test results in EHR

Data warehouse

PGx Population Health Management

Need

- Incidental findings
 - Concomitant medications
 - Heritable conditions
- Surveillance for new, high-risk drug gene interactions despite CDS systems.

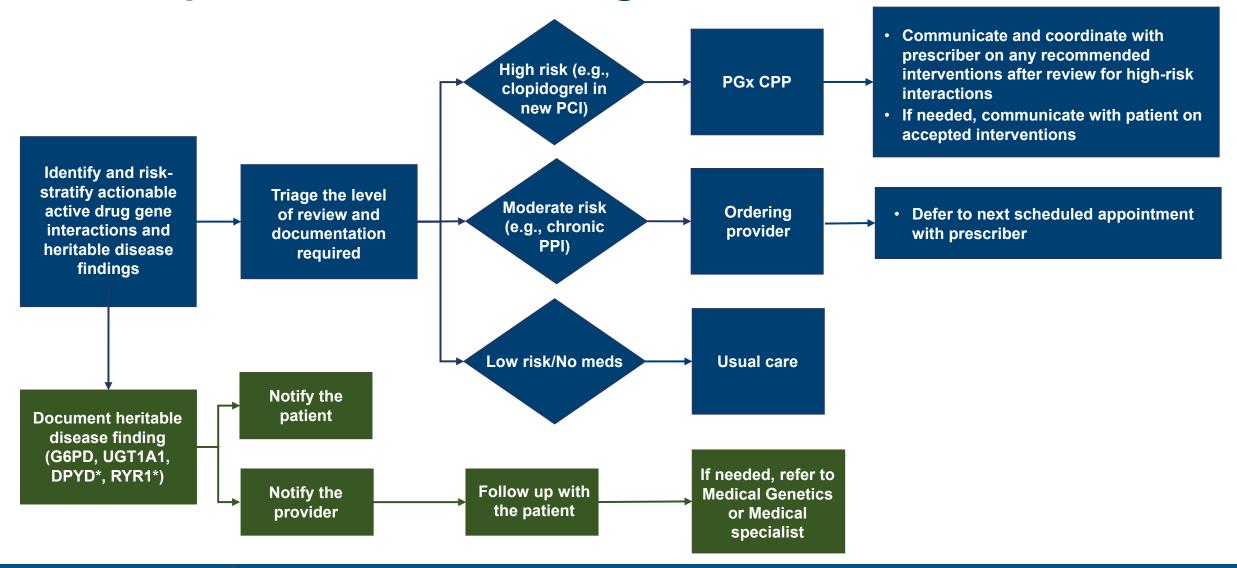
Enabling Features

Pharmacovigilance is an established practice in VA medication safety

Telehealth capabilities allow pharmacists to cross health systems and state lines

PGx trained pharmacists at local, regional, and national levels

Centralized PGx database of all PGx test results


Dashboards that evaluate and resolve existing medications/PGx results for potential intervention

PGx Population Health Management Workflow

Build 'end-to-end' provider support for implementing PGx at any facility: Data Warehouse

Access to panel-based PGx testing for more than 40 medications

Learning community of practice

Educational materials to review testing and interpretation

Remote pharmacist support for direct patient care and population health management

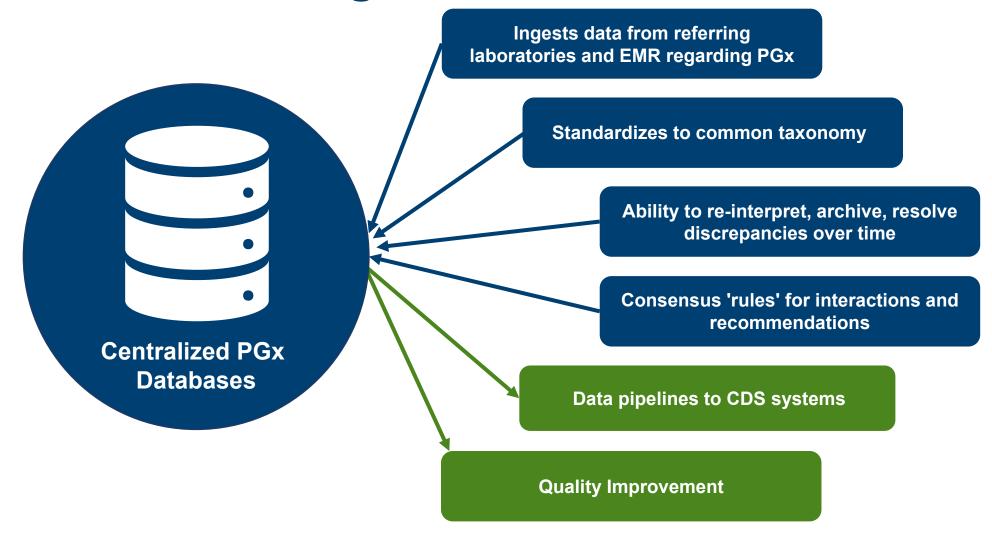
Clinical decision support systems

Local PGx trained
Pharmacist to lead
the change in
practice behavior

PGx trained pharmacist for post-testing consultation

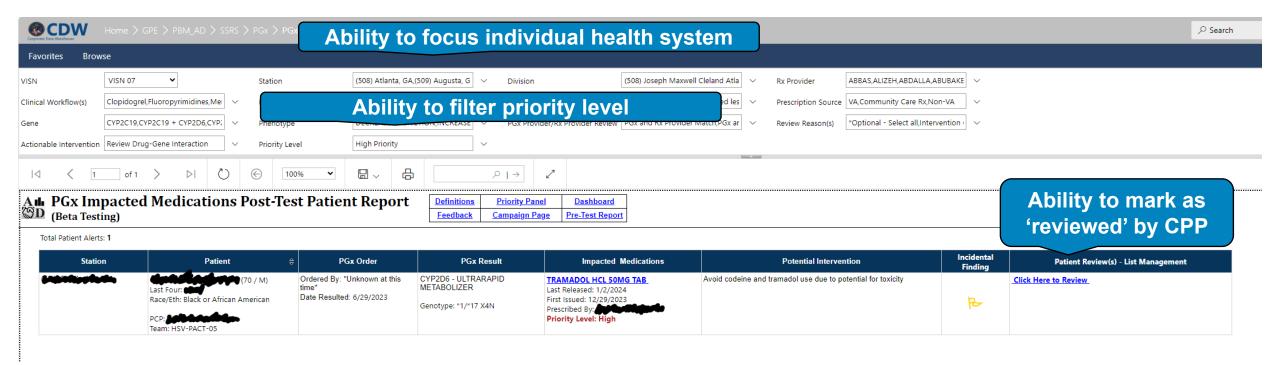
Return of results to patients

Provider-friendly summary of PGx test results in EHR

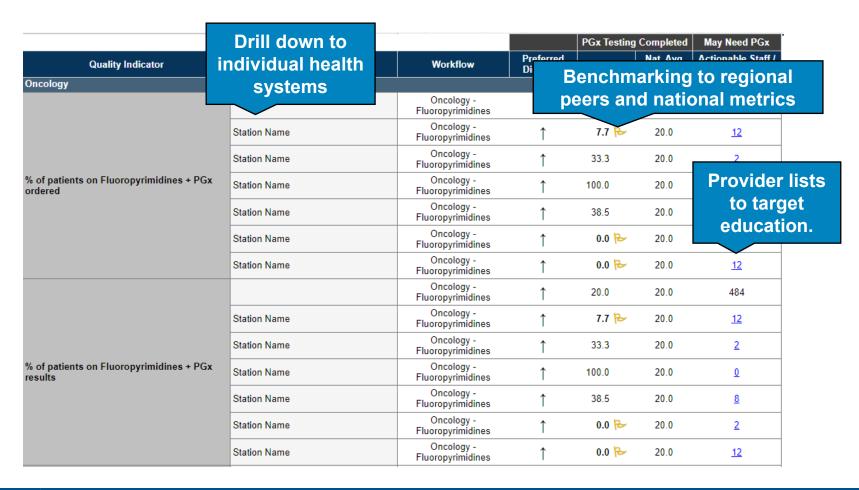

Data warehouse

PGx Data Warehousing

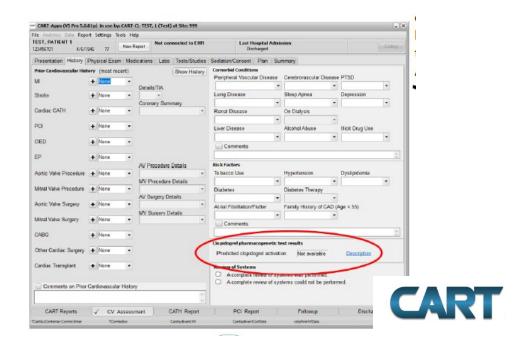
Interruptive CDS systems for over 50 medications


asons (required for High Severity only) Total Alerts Order Checking OverrideReason clean (1 of 1) Pharmacogenomics Test Warning - Consider Alternative Agent refill 33,501 ACTION: Consider alternative to codeine (and meds metabolized by indication justified CYP2D6). Patient may experience insufficient pain relief 6.28K based on pharmacogenomics (PGx) results. will monitor (43.63%)ALTERNATIVES: not specified Unique Patients * Non-pharmacological treatments dose adjusted * Non-opioid analgesics (e.g., NSAIDS) * If an Opioid is indicated, do NOT use: Previous Adverse Rea... - Tramadol 9,217 - Hydrocodone home med - Oxycodone clinician reviewed RATIONALE: Patient is a poor metabolizer of CYP2D6. Far fewer active metabolites form than expected home meds. % Of Patient Teste resulting in reduced pain relief. NOTED BY PCP. RESOURCES: home medication * Clinical assistance: order local or interfacility 16.89% pharmacogenomics consult * Information on testing: go to https://bit.ly/PHASERhome * Feedback on this alert: email PHASER-CROC@va.gov * Non-clinical support: IM or email PHASERtechsupport@va.gov Last Occurrence Date Total Providers 6/12/2024 7,597 Accept Order Drug Interaction Monograph Cancel Order

Bringing PGx data to PGx Clinical Pharmacists

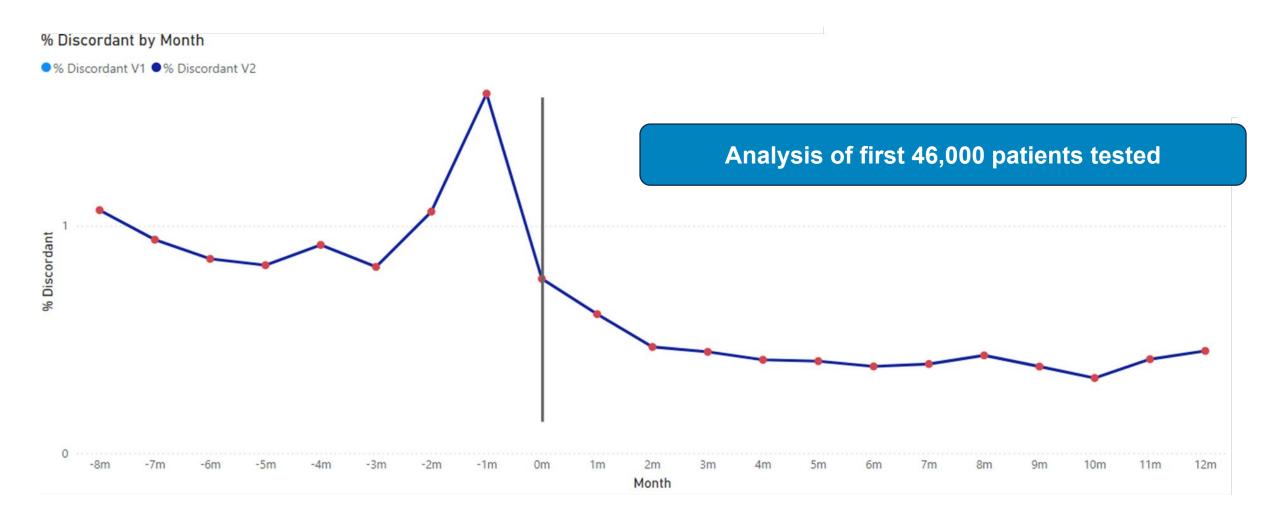


Dashboards to allow audit-feedback and targeted provider education



Bringing PGx data to Prescriber specific clinical dashboards

- Stratifies risk of overdose
- Identifies modifiable risk factors
- Displays PGx results for codeine/tramadol users



Discordant Medication Orders: Pre-Post Comparison

as of June 14, 2024

Summary

- VA has the evidence to demonstrate that PGx can improve health outcomes
 - Implementation barriers exist beyond access/cost of PGx testing
- Investments are needed to shift the balance of perceived value vs. barrier of PGx
 - PGx is as much a behavioral intervention as it is a medical one
- Existing front line health care providers like pharmacists can be upskilled and enabled to drive practice change

Future Directions

Expand access to PGx testing

Perform cost analyses from payer perspective

Reduce variation across geographic location, pharmacist investment model, and EHR

Conduct clinical outcomes analysis

Questions

If you have any additional questions, please contact <u>deepak.voora@va.gov</u>.

THANK YOU

