AI & Oncology: Managing the Tsunami of Medical Information

University of Pennsylvania Biomedical Research Building 421 Curie Boulevard Philadelphia, PA 19104

June 21, 2024

David R. Penberthy, MD MBA

Associate Professor and Program Director University of Virginia Department of Radiation Oncology President, ACCC 2022-2023

Disclosures

Name	Employment	Funding Sources	Ownership & investments	Leadership
David R. Penberthy, MD, MBA	UVa Health AstraZeneca Startups and Real Estate	None	CHS stock Mutual funds Startup - ROMTech Startup – TensorBlack	ACCC Board of Trustees

I would like to acknowledge

K. Singh Sahni, MD Alfred M. Strash, PhD Faye Flemming RN, BSN, OCN Tracey Tatum, RN, NP Scott Penberthy, PhD Peter Diamandis, MD Matt Devino, MPH Mark Liu, MPH Amy Ellis, RN **Douglas Flora**, MD Sarah McGough, PhD John Frownfelter, MD, FACP **Rick Baehner, MD** Blythe Adamson, PhD, MPH **Kevin Davies**, PhD Michael Dake, MD **Ryan Langdale**

for their assistance with this presentation

Learning objectives

Statement of the cancer problem

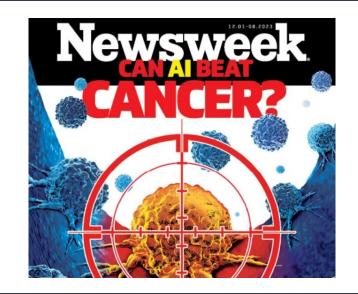
Current state of multidisciplinary care

Al and Future directions

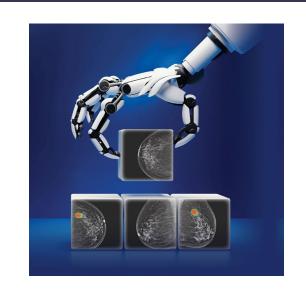
ACCC) 50/cars ASSOCIATION OF CANCER CARE CENTERS™

• Powerful network of >41,000 multidisciplinary practitioners from over 2100 hospitals and practices nationwide in every state

• $\sim 2/3$ of the nation's cancer patients are treated by a member of ACCC

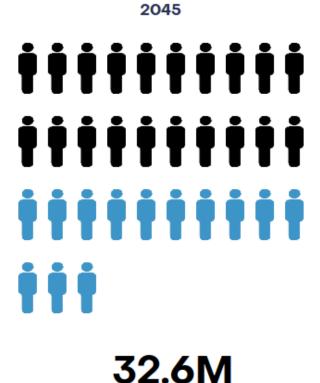

www.accc-cancer.org

nature medicine


Al-guided cancer radiotherapy



Magnitude



Estimated number of new cases from 2022 to 2045, Both sexes, age [0-85+] All cancers World

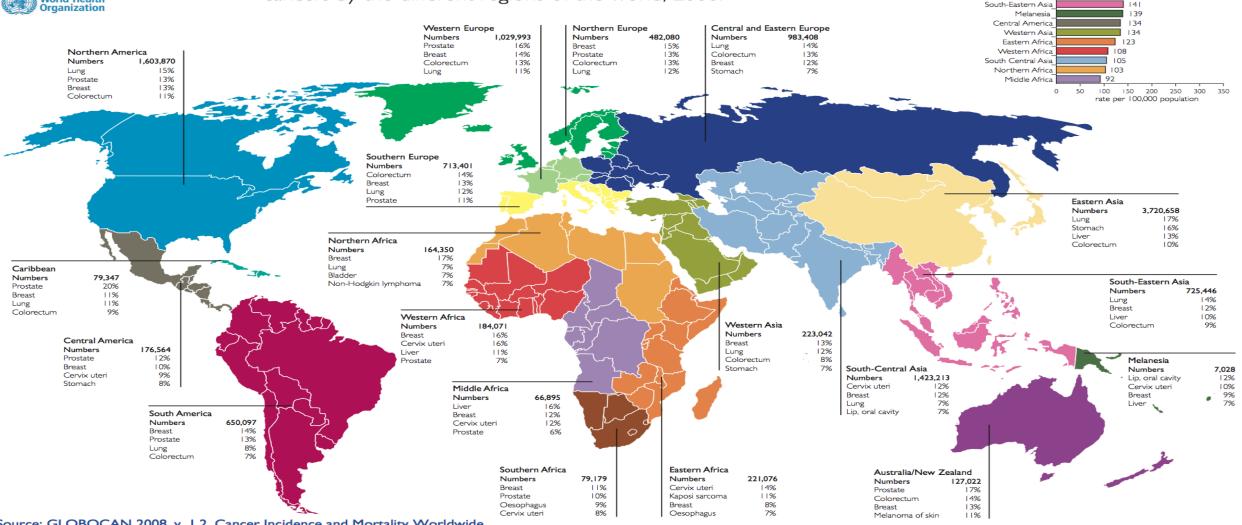
2022

! ! ! ! ! ! ! ! ! ! !

20.0M

Cancer Tomorrow | IARC - https://gco.iarc.who.int Data version: Globocan 2022 (version 1.1) - 08.02.2024 © All Rights Reserved 2024

International Agency for Research on Cancer World Health Organization



International Agency for Research on Cancer

World Health

Cancer Incidence Worldwide

Breakdown of the estimated 12.7 million new cases, World-age standardised incidence rates and the most commonly diagnosed cancers by the different regions of the world, 2008.

Source: GLOBOCAN 2008, v. 1.2, Cancer Incidence and Mortality Worldwide. IARC, 2010 (http://globocan.iarc.fr)

Map updated February 2011

http://info.cancerresearchuk.org/cancerstats/

© Cancer Research UK Registered charity no.1089464 (England & Wales) & SC041666 (Scotland)

287

269

244

21

190

188

173

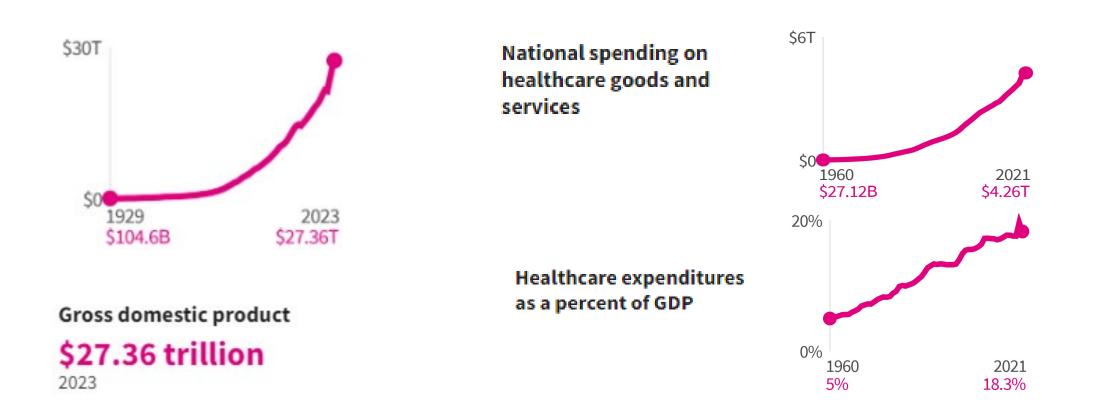
172

Australia/New Zealand

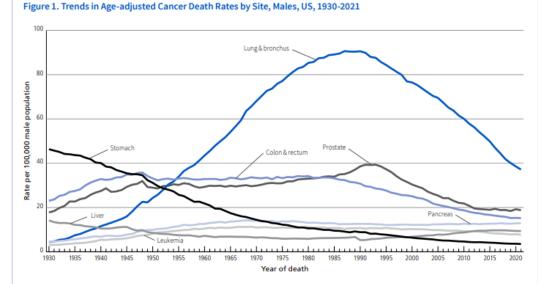
Central and Eastern Europe

Northern America Western Europe

Northern Europe


Southern Europe

Southern Africa


South America

Eastern Asia Caribbean

GDP issues

So how are we doing?

Rates are age adjusted to the 2000 US standard and exclude deaths in Puerto Rico and other US territories. Note: Due to changes in ICD coding, numerator information differs from contemporary data for cancers of the liver, lung and bronchus, and colon and rectum. Source: US Mortality Volumes 1930 to 1959, US Mortality Data 1960 to 2021, National Center for Health Statistics, Centers for Disease Control and Prevention. @2024, American Cancer Society, Inc., Surveillance and Health Equity Science 5 Takeawa Cancer Fao Repo

Lung cancer patients are being diagnosed earlier, and living longer.

The racial, socioeconomic, and geographic disparities for preventable cancers are alarming.

Takeaways from the Cancer Facts & Figures Report 2022

Cancer mortality is declining at an accelerating rate.

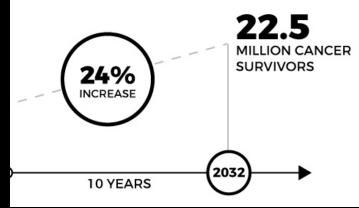
The rate of advancedstage prostate cancer diagnosis increased by 4%-6% each year from 2014 -2018.

______/____

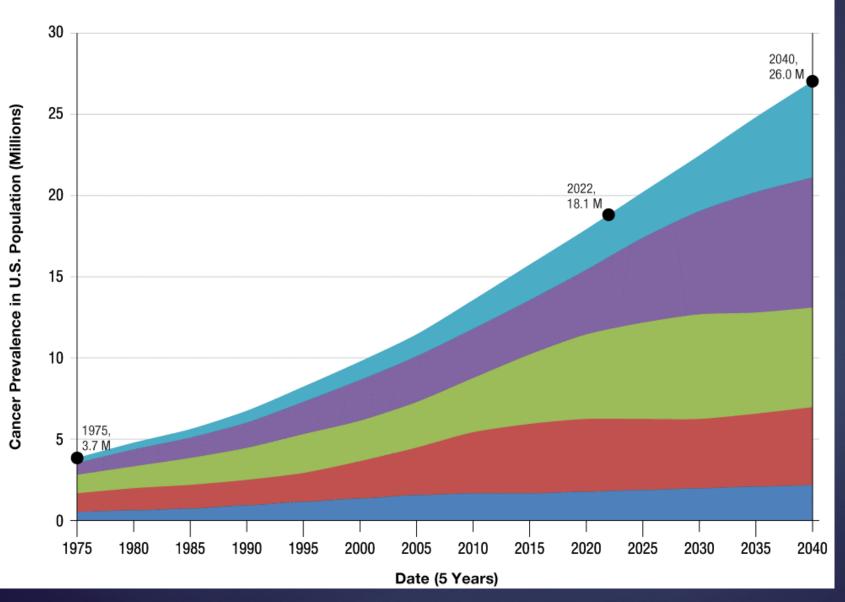
In 2022, there will

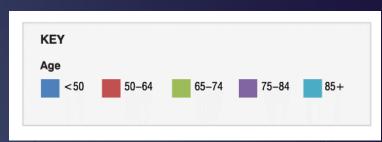
be an estimated

1,918,030 new cancer diagnoses, and 609,360

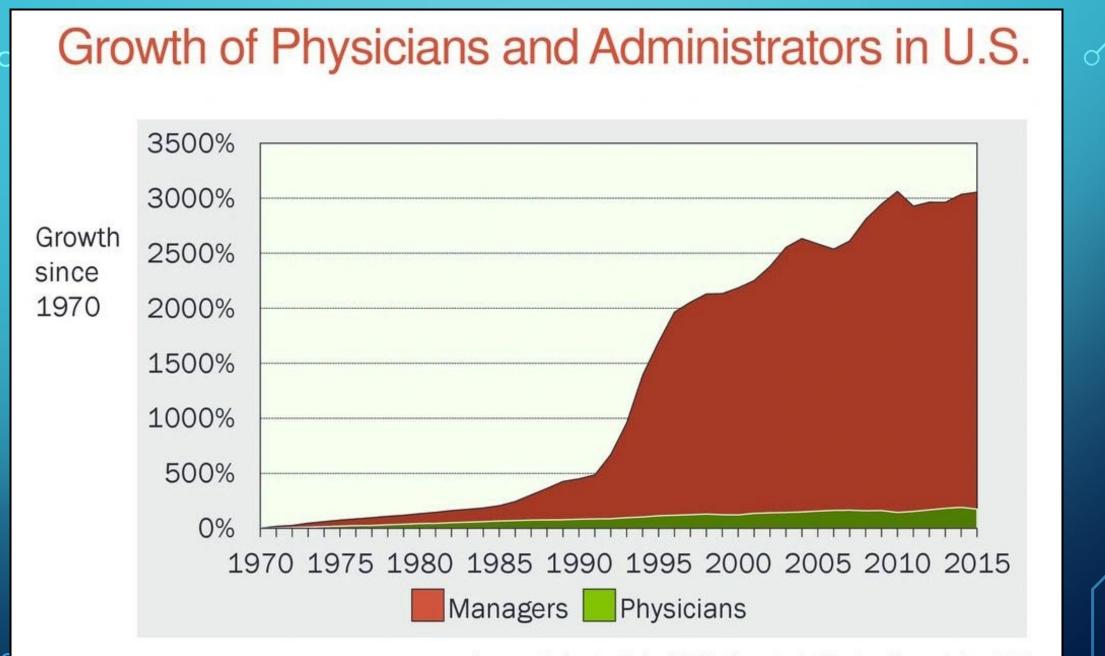

cancer deaths.

MILLION CANCER SURVIVORS

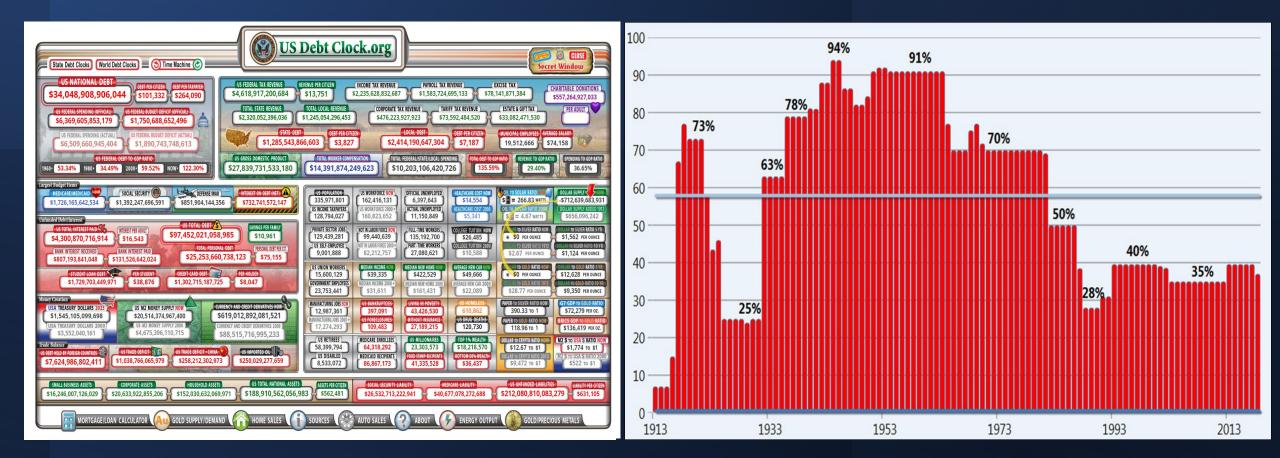

OF SURVIVORS HAVE LIVED 5+ YEARS SINCE DIAGNOSIS



Cancer Prevalance and Projections in U.S. Population from 1975–2040



REFERENCES:

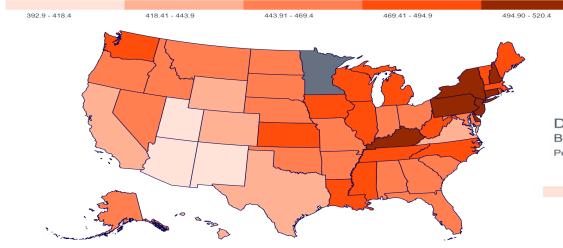

Adapted from Bluethmann SM, Mariotto AB, Rowland JH. Anticipating the "Silver Tsunami": Prevalence Trajectories and Comorbidity Burden among Older Cancer Survivors in the United States. Cancer Epidemiol Biomarkers Prev. 2016 Jul;25(7):1029-36.

Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J and Siegel RL. Cancer Treatment and Survivorship Statistics. CA A Cancer J Clin. 2022.

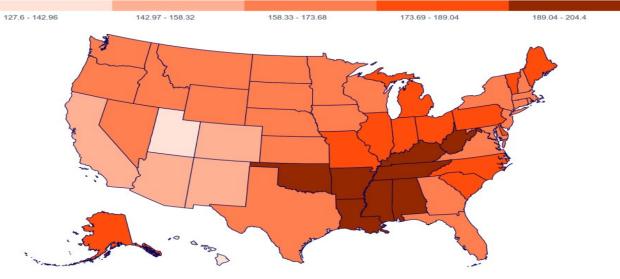
Bureau of Labor Statistics; NCHS; Himmelstein/Woolhandler analysis of CPS Managers shown as moving average of current year and two previous years

US Debt and Taxes

National debt \$34T and counting www.usdebtclock.org


US CANCER INCIDENCE AND MORTALITY

Cancer


Incidence rates, 2008-2012 By state, all cancer types combined Per 100,000, age adjusted to the 2000 US standard population

Data Source: North American Association of Central Cancer Registries (NAACCR), 2015

© 2016 American Cancer Society

Death rates, 2008-2012 By state, all cancer types combined Per 100,000, age adjusted to the 2000 US standard population

Data Source: National Center for Health Statistics (NCHS), Centers for Disease Control and Prevention, 2015 © 2016 American Cancer Society

CancerStatisticsCenter.org

THE MEDICAL LITERATURE TSUNAMI

Pubmed

Daily: ~4,000 weekly: ~28,000 Monthly: ~120,000

10% oncology related Daily - ~400 weekly - ~2800 Monthly - ~12,000 Annually - ~144,000

These figures only represent a fraction of the medical information being generated, as they do not account for other sources like clinical trials, patents, guidelines, conference proceedings, and more. Additionally, the growth of data in fields like genomics and digital health is further accelerating the expansion of medical information.

Growth of Guidelines

"Further approaches, including guideline stratification by evidence level and the use of artificial intelligence for decision support, should be investigated as ways to synthesize data and improve cancer decisionmaking."

Network Open.

Research Letter | Oncology

Changes in Length and Complexity of Clinical Practice Guidelines in Oncology, 1996-2019

Benjamin H. Kann, MD; Skyler B. Johnson, MD; Hugo J. W. L. Aerts, PhD; Raymond H. Mak, MD; Paul L. Nguyen, MD

Figure 1. Page Volume of National Comprehensive Cancer Network Clinical Practice Guidelines by Disease Site, 1996-2019

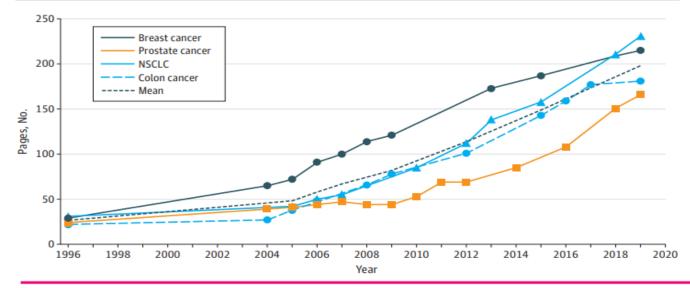
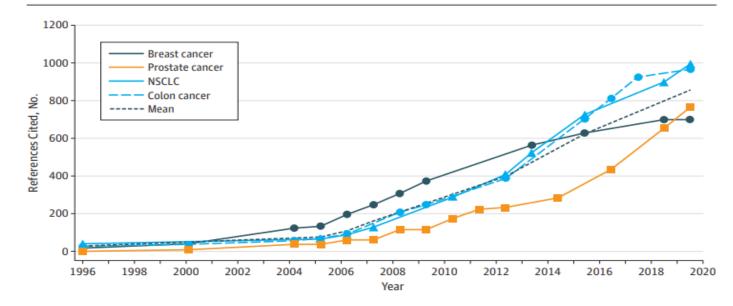
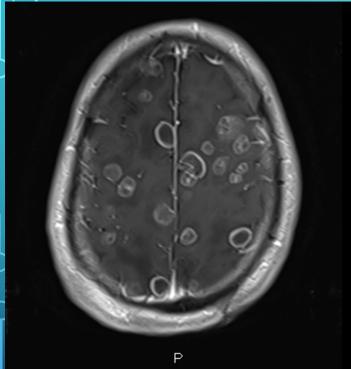




Figure 2. References Cited in National Comprehensive Cancer Network Clinical Practice Guidelines by Disease Site, 1996-2019

FEEL GOOD CASE

Histology Analysis Multiple Marker Panel Specimen type: Lymph Node, Station 4R Performed at : NeoGenomics Laboratories

TPS >/=50%

TPS 1-49% TPS <1%

Results

Test Name:

PD-L1 22C3 FDA for NSCLC: HIGH PD-L1 EXPRESSION Tumor Proportion Score: 100% Intensity: 3+

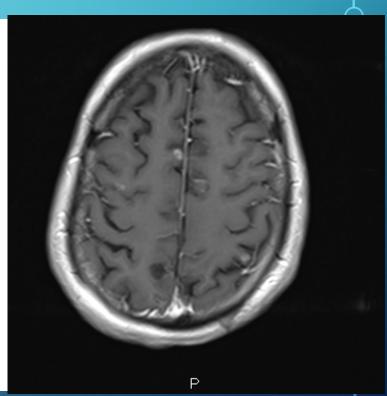
Reference Ranges High PD-L1 Expression PD-L1 Expression No PD-L1 Expression

Pan-TRK Not Expressed

Electronic Signature Scott Bourne, M.D., Pathologist

See attached report for further details.

Test Name: **NeoTYPE Analysis Lung Tumor Profile** Lymph Node, Station 4R Specimen type: Performed at : **NeoGenomics Laboratories**


Results Summary

SNVs/Indels: ERBB2 Y772_A775dup; TERT promoter c.-124C>T Alterations Detected By FISH: FISH report is not yet completed, see subsequent report Immuno-Oncology Biomarkers: Microsatellite Instability: MSI - Stable (MSS); PD-L1 22C3: HIGH PD-L1 EXPRESSION; Tumor Mutation Burden: Intermediate Additional Studies: MET Exon 14 Deletion Analysis: Not Detected; Pan-TRK: Not Expressed Pertinent Negatives: NO alterations detected in the following genes: BRAF, EGFR, KRAS

Interpretation

 FLUORESCENCE IN SITU HYBRIDIZATION (FISH): Please refer to separate report for FISH details once results are available. - The expression of PD-L1 suggests response to immunotherapy with anti-PD-1 or anti-PD-L1, which are FDA-approved for diverse solid tumor types. - The VAF of the ERBB2 variant suggests ERBB2 (HER2) amplification. Clinical correlation with immunohistochemistry and/or FISH is recommended.

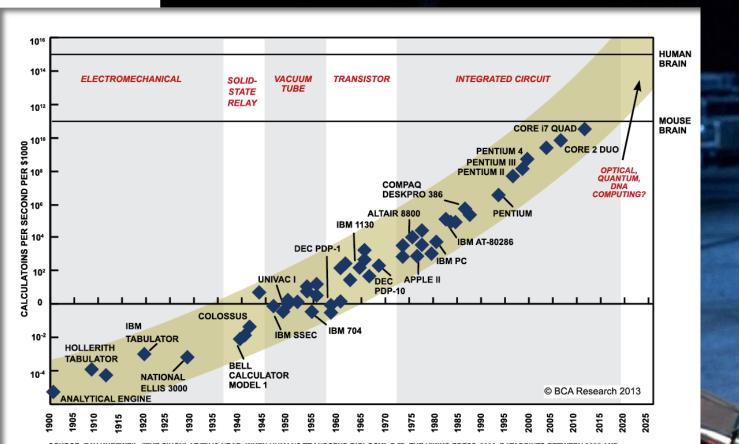
Her2 Exon 20 insertion mutation for which there is an FDA approved indication - Enhertu® (Traztuzumab deruxtecan) *also did HER2 IHC and FISH testing, IHC reported 2+ equivocal, a distractor for someone who also treats breast cancer

"It is often easier (and faster) to make something 10x better than it would be to make it 10% better."

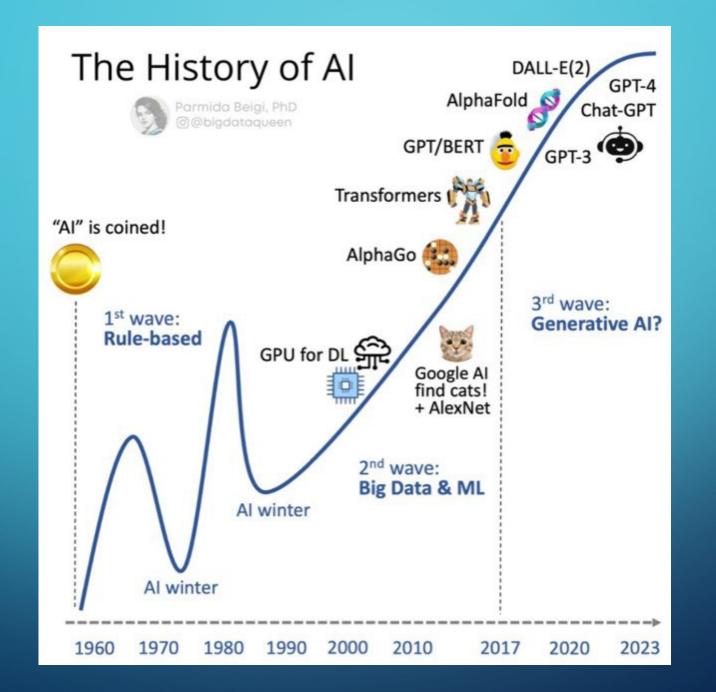
Astro Teller

WHAT IS THIS?

- Bell Labs scientists invented the transistor in 1947, and won the 1956 Nobel Prize in Physics
 - John Bardeen
 - Walter Brattain
 - William Shockley
- John McCarthy coined the term "artificial intelligence" in 1956



...AND NOW


-

The robots are coming.

Ray Kurzweil c. 2006

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 2012 REPRESENT BCA ESTIMATES.

arXiv

https://arxiv.org Cornell University

Free distribution service and open access for **>2.3M** articles in physics, mathematics, computer science, quantitative biology, quantitative finance, statistics, electrical engineering and systems science, and economics

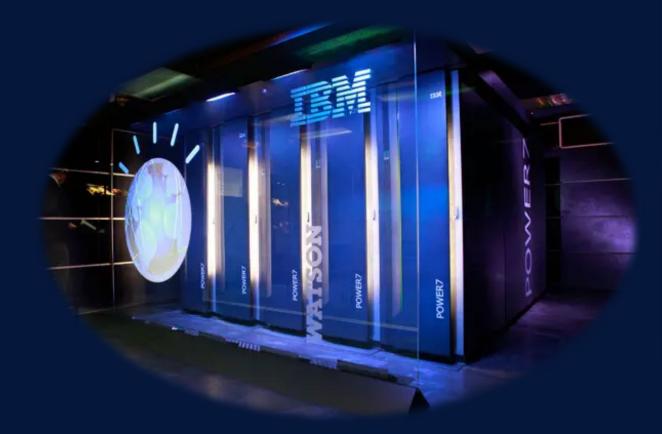
 ~ 1200 daily submissions

a place of connection, linking together people and ideas, and connecting them with the world of open science

b MACHINE AND DEEP LEARNING STUDIES ON PUBMED.COM

Source: https://www.reddit.com/r/appledatahoarding/comments/14ok07m/number of medical ai studies by year from 2010 to/

Accessed 2/1/24


a

DEEP BLUE – HOW AI BEAT THE WORLD CHAMPION

HOW AI "WATSON" BEAT TWO CHAMPIONS

ALPHAGO BEAT LEE SEDOL

Google DeepMind

AITHEN AND NOW

1961-1970

1961

First industrial robot replaced humans at assembly line

1964

Pioneering chat, but named ELIZA was developed at MIT

1966

1950-1960

Turing test by Alan

term of AI was

1950

Turing

1956

coined

General purpose, mobile robot developed at Stanford

1997

IBM's Deep Blue defeated Garry Kasparov in chess competition

1998

An emotionally intelligent robot KISMAT was developed

1999

Sony launched pet robot dog named AIBO

2011

IBM's Watson defeated Ken Jennings on Jeopardy!

2014

EUGENE, a chatbot passed Turing test; Amazon launched Alexa, a voice enabled intelligent virtual assistant

2017

Google's AlphaGO be the world's best GO player Ke Jie

2011-2020

1971-1990 1991-2000

AI WINTER

2002

iRobot launched a time is the vacuum cleaner robot in bulk

2001-2010

2009

Google built for self driving car for urban conditions

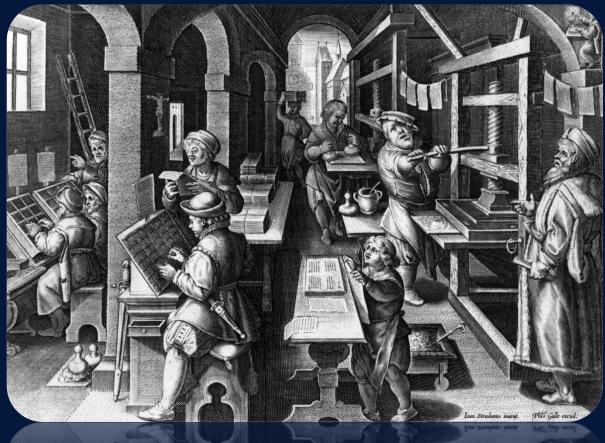
• Moxie: a social, emotional companion for kids is developed by Embodied

2020

2021

- Earth's first autonomous beehive is developed by beewise
- **TrialJectory** is an AI enable service to look for clinical trials
- BrainBox AI is an AI system to predict building's normal conditions
- Refine business process, more personalized recommendations, human like conversational skills

AI VIDEO GENERATION NOW



IS THIS A GUTENBERG MOMENT?

IS THIS A GUTENBERG MOMENT?

Envisioning the Healthcare Landscape with ChatGPT

New York Medical College Explores The Opportunities And Risks Of Al On The Healthcare Industry In The Following Article Written Entirely Using ChatGPT

February 13, 2023

Opinion > Kevin, M.D.

AI in Healthcare: Meeting HIPAA Standards With ChatGPT

- Patients deserve a commitment to privacy

by Harvey Castro, MD, MBA February 11, 2023

ChatGPT Passes US Medical Licensing Exam Without Clinician Input

ChatGPT achieved 60 percent accuracy on the US Medical Licensing Exam, indicating its potential in advancing artificial intelligence-assisted medical education.

New and surprising evidence that ChatGPT can perform several intricate tasks relevant to handling complex medical and clinical information

Download PDF Copy

Feb 13 2023

ChatGPT AND HEALTHCARE THE KEY TO THE NEW FUTURE OF MEDICINE

Digital Health

THE LANCET

COMMENT | ONLINE FIRST

ChatGPT: the future of discharge summaries?

Sajan B Patel • Kyle Lam 🖾

pen Access • Published: February 06, 2023 • DOI: https://doi.org/10.1016/S2589-7500(23)00021-3 •

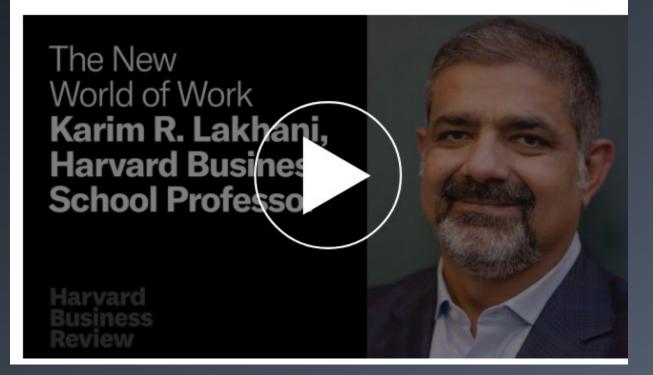
FORBES > INNOVATION > HEALTHCARE

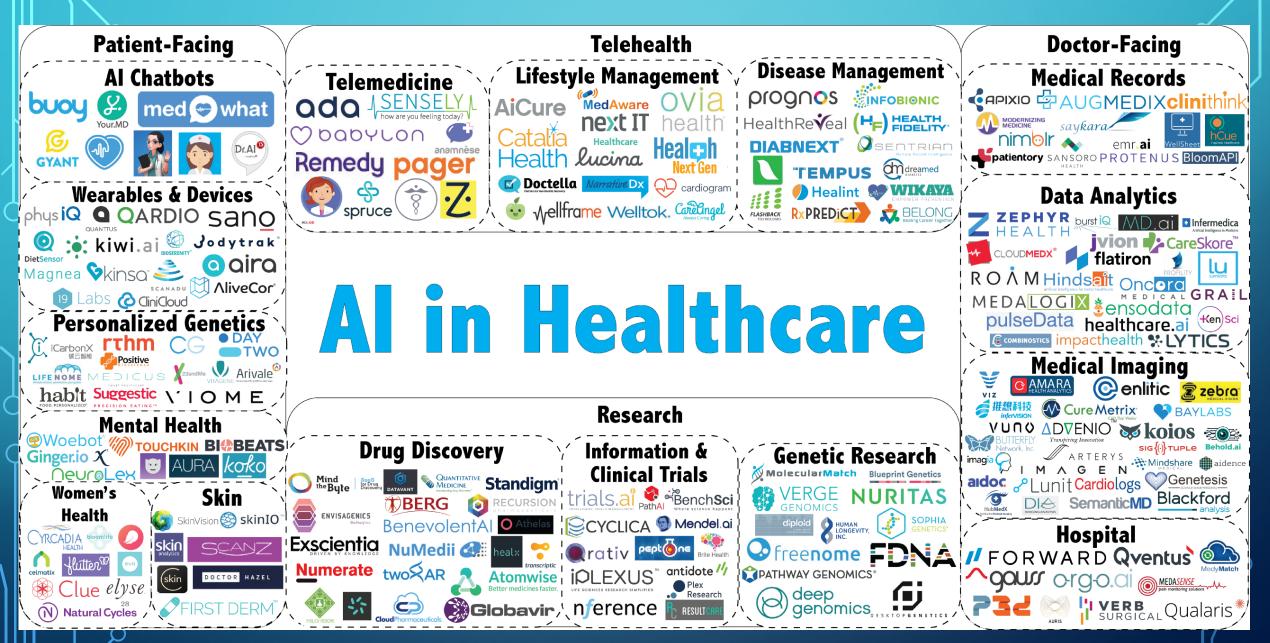
EDITORS' PICK

5 Ways ChatGPT Will Change Healthcare Forever, For Better

Robert Pearl, M.D. Contributor ①

AI WON'T REPLACEYOU. SOMEONE USING AI WILL.




Original image created using beautiful ai

Business And Society

Al Won't Replace Humans – But Humans With Al Will Replace Humans Without Al

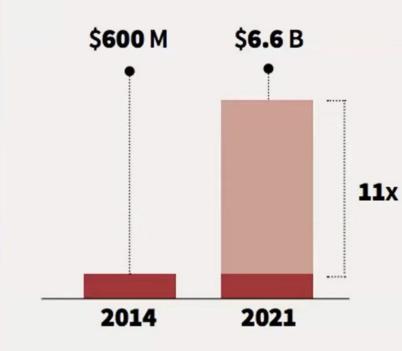
August 04, 2023

MENU

Q

OCTOBER 30, 2023

FACT SHEET: President Biden Issues Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence


BRIEFING ROOM > STATEMENTS AND RELEASES

Today, President Biden is issuing a landmark Executive Order to ensure that America leads the way in seizing the promise and managing the risks of artificial intelligence (AI). The Executive Order establishes new standards for AI safety and security, protects Americans' privacy, advances equity and civil rights, stands up for consumers and workers, promotes innovation and competition, advances American leadership around the world, and more.

As part of the Biden-Harris Administration's comprehensive strategy for responsible innovation, the Executive Order builds on previous actions the President has taken, including work that led to voluntary commitments from 15 leading companies to drive safe, secure, and trustworthy development of AI.

https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-presidentbiden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/

Health AI Market Size 2014 - 2021

Acquisitions of AI startups are rapidly increasing while the health market is set to register an explosive CAGR of 40% through 2021.

Source: Accenture (December 2017). Artificial Intelligence in Healthcare.

GLOBAL ARTIFICIAL INTELLIGENCE IN HEALTHCARE MARKET

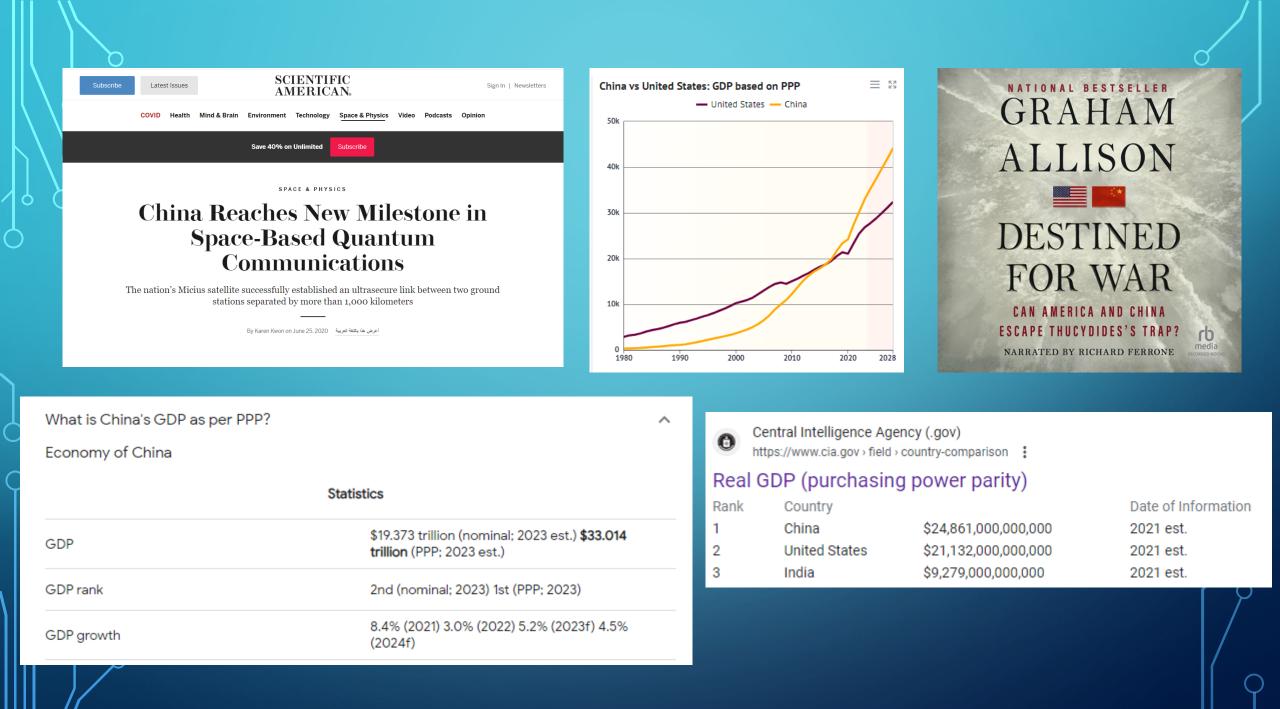
ARTIFICAL INTELLIGENCE (AI) IN HEALTHCARE Market

OPPORTUNITIES AND FORECAST, 2021-2030

Artifical Intelligence (AI) in Healthcare Market is expected to reach **194.14 Billion** by 2030.

Growing at a CAGR of 38.1% (2021-2030)

Growing at a CAGR of 48.7% (2017-2023)


Source: Artificial Intelligence in Healthcare Market | Global Report - 2030 (alliedmarketresearch.com)

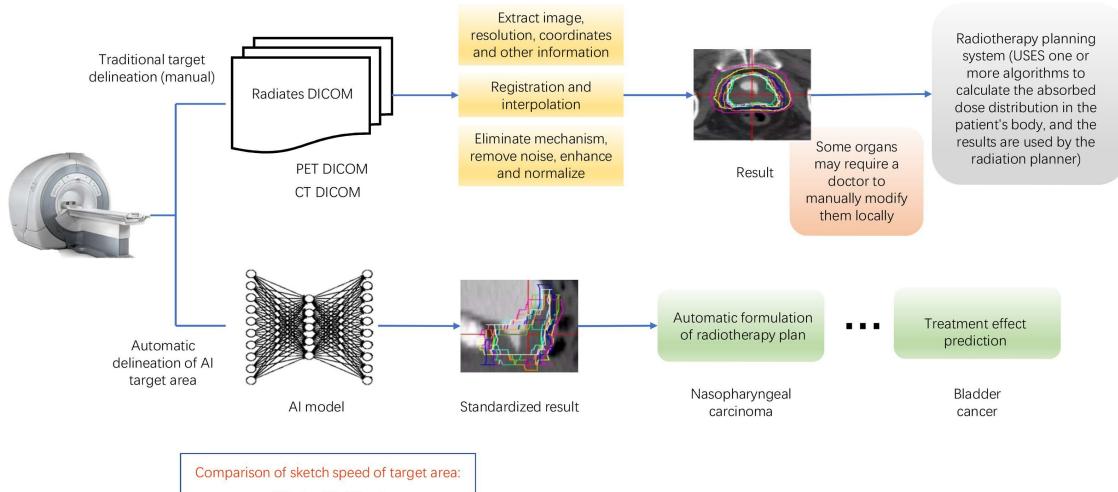
GLOBAL ARTIFICIAL INTELLIGENCE IN HEALTHCARE MARKET

Asia-Pacific region would exhibit the highest CAGR of 53.4% during 2017-2023.

Original Investigation

April 28, 2023

Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum


John W. Ayers, PhD, MA^{1,2}; Adam Poliak, PhD³; Mark Dredze, PhD⁴; <u>et al</u>

Results Of the 195 questions and responses, evaluators preferred chatbot responses to physician responses in 78.6% (95% CI, 75.0%-81.8%) of the 585 evaluations. Mean (IQR) physician responses were significantly shorter than chatbot responses (52 [17-62] words vs 211 [168-245] words; t=25.4; P<.001). Chatbot responses were rated of significantly higher quality than physician responses (t=13.3; P<.001). The proportion of responses rated as *good* or *very good* quality (\geq 4), for instance, was higher for chatbot than physicians (chatbot: 78.5%, 95% CI, 72.3%-84.1%; physicians: 22.1%, 95% CI, 16.4%-28.2%;). This amounted to 3.6 times higher prevalence of *good* or *very good* quality responses for the chatbot. Chatbot responses rated *empathetic* or *very empathetic* (\geq 4) was higher for chatbot than for physicians (physicians: 4.6%, 95% CI, 2.1%-7.7%); chatbot: 45.1%, 95% CI, 38.5%-51.8%; physicians: 4.6%, 95% CI, 2.1%-7.7%). This amounted to 9.8 times higher prevalence of *empathetic* or *very empathetic* responses for the chatbot.

Conclusions In this cross-sectional study, a chatbot generated quality and empathetic responses to patient questions posed in an online forum. Further exploration of this technology is warranted in clinical settings, such as using chatbot to draft responses that physicians could then edit. Randomized trials could assess further if using AI assistants might improve responses, lower clinician burnout, and improve patient outcomes.

AI IN RADIATION ONCOLOGY

Automatic delineation of tumors and organs at risk

Al takes 10-20 minutes Manual work takes 4-5 hours

CAPACITY MANAGEMENT

LeanTaaS Overview

Silicon Valley, Charlotte and Boston based software company

 PhDs in Mathematics, Software Engineers, Product Managers, Operations Experts, Hospital Executives

\$350+ Million invested in predictive analytics platform "iQueue"

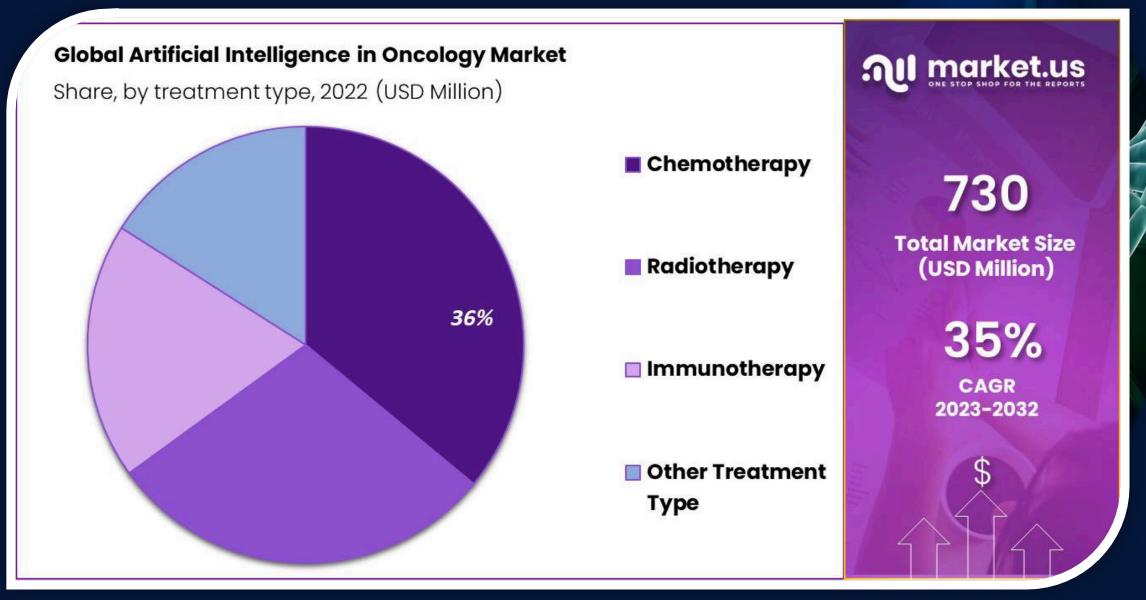
Mission: Unlock capacity of scarce assets using predictive and prescriptive analytics:

- Improve patient access
- Increase volumes and revenues
- Reduce wait time for patients
- Reduce operating costs
- Defer the need for facility expansion

6 Patents Pending

Awards & 3rd Party Validation

14 of top 20

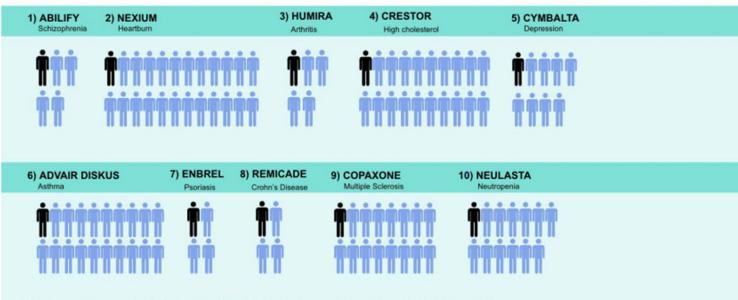

175

Health Systems


States in the U.S.

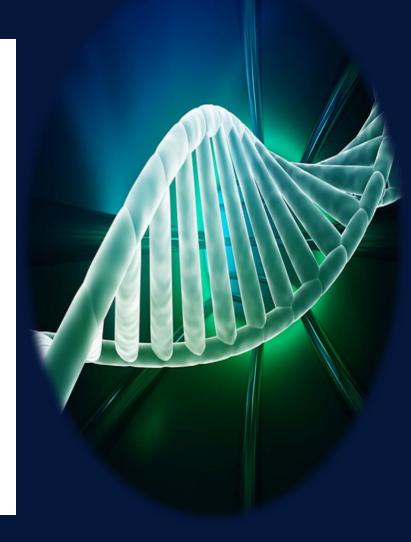
46

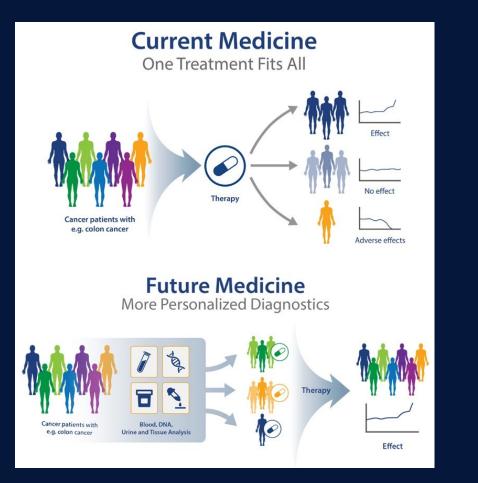
ECONOMIC POTENTIAL OF AI IN ONCOLOGY



ECONOMIC POTENTIAL OF ALIN ONCOLOGY

BRIDGING SCIENCE & PRECISION PATIENT CARE


Phenome (WGS + LPR) cohorts can stratify diseases, from first principles.


For every person in the US that the 10 highest grossing drugs **do help** (black), they fail to improve the conditions of between 3 - 24 people (blue).

Schork, Nicholas. Time for one-person trials. Nature. Vol 520. April 2015

Source Schork, Nicholas. Personalized Medicine: Time for one-person trials. Nature. Vol 520, April 2015.

BRIDGING SCIENCE & PRECISION PATIENT CARE

CHANGING THE HEALTHCARE LANDSCAPE

Streamlining Workflows

Reducing Costs

Improving Collaboration

Advancing Research

Empowering Patients

Technology changes.....

At Illumina, their goal is to apply innovative

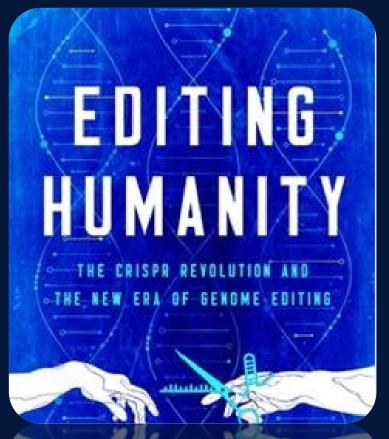
technologies and revolutionary assays to the analysis

opular Posts

with a giant net

says is "expected one day" to order up your whole genome for less than \$100.

on a big ship


How CRISPR works

The Cas9 protein forms a complex with Cas9 guide RNA in a cell 2. This complex attaches to a matching genomic DNA sequence adjacent to a spacer Guide RNA (yellow segment)

In 2012, scientists at the University of Leicester decided to print out a complete version of the human genome. When they were done, they had a 130-volume monument to humanity's essence—a seemingly endless sequence of As, Ts, Cs, and Gs in four-point type. Curiously, the printing project's costs already exceeded the costs of actually sequencing the genome anew. Since then, the price differential has only grown. Cas Kramer (Univ. Leicester) »

THE CRISPR REVOLUTION

"The term 'Holy Grail' is overused in science," Davies writes, "but if fixing a single letter in the genetic code of a fellow human being isn't the coveted chalice of salvation, I don't know what is."

INNOVATION THAT BENEFITS PROVIDERS AND PATIENTS

MEDTECH

FDA clears Paige's Al as first program to spot prostate cancer in tissue slides

By Conor Hale • Sep 22, 2021 11:59am

EDITORIAL

Deep Learning Algorithms for Detection of Lymph Node Metastases From Breast Cancer Helping Artificial Intelligence Be Seen

<mark>(Nejm</mark> Evidence

Published March 28, 2022 NEJM Evid 2022; 1 (5) DOI: 10.1056/EVIDoa2100058

ORIGINAL ARTICLE

AI Estimation of Gestational Age from Blind Ultrasound Sweeps in Low-Resource Settings

Teeranan Pokaprakarn, Ph.D.,¹ Juan C. Prieto, Ph.D.,² Joan T. Price, M.D., M.P.H.,^{3,4} Margaret P. Kasaro, M.D., M.P.H.,^{3,5} Ntazana Sindano, B.Sc.,³ Hina R. Shah, M.S.,² Marc Peterson, M.S.,⁴ Mutinta M. Akapelwa, B.Sc.,³ Filson M. Kapilya, B.Sc.,³ Yuri V. Sebastião, Ph.D.,⁴ William Goodnight III, M.D., M.S.,⁴ Elizabeth M. Stringer, M.D., M.Sc.,⁴ Bethany L. Freeman, M.P.H., M.S.W.,⁴ Lina M. Montoya, Ph.D.,¹ Benjamin H. Chi, M.D., M.Sc.,^{3,4} Dwight J. Rouse, M.D., M.S.P.H.,⁶ Stephen R. Cole, Ph.D.,⁷ Bellington Vwalika, M.D., M.Sc.,^{4,5} Michael R. Kosorok, Ph.D.,¹ and Jeffrey S. A. Stringer, M.D.^{3,4} JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

Al Partnership to Advance Brain Tumor Research, Treatment

Hackensack Meridian Health and Neosoma, Inc. have announced a collaboration aimed at tackling difficult-to-treat brain tumors through the use of artificial intelligence.

JAMA Guide to Statistics and Methods

Using Free-Response Receiver Operating Characteristic Curves to Assess the Accuracy of Machine Diagnosis of Cancer

Chays 5. Moskowitz, PhD

JAMA | Original Investigation

Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

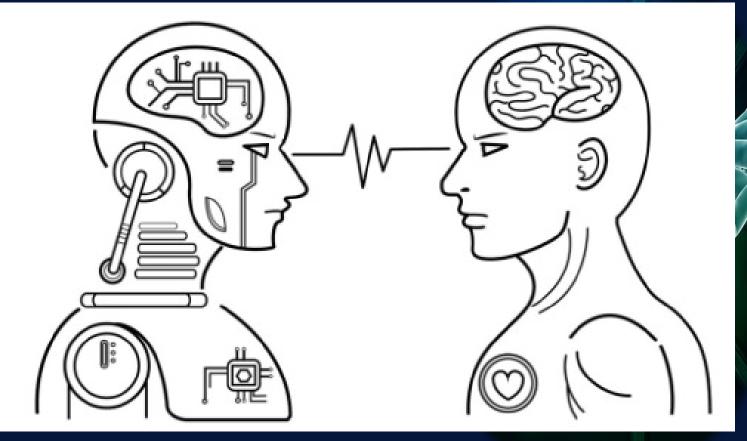
Babak Ehteshami Bejnordi, MS: Mitko Veta, PhD; Paul Johannes van Diest, MD, PhD; Bram van Ginneken, PhD; Nico Karssemeijer, PhD; Geert Litjens, PhD; Jeroen A. W. M. van der Laak, PhD; and the CAMELYONI6 Consortium

HEALT

White House unveils CancerX innovation accelerator, new funding for cancer screenings on Moonshot anniversary

Radiology: Artificial Intelligence

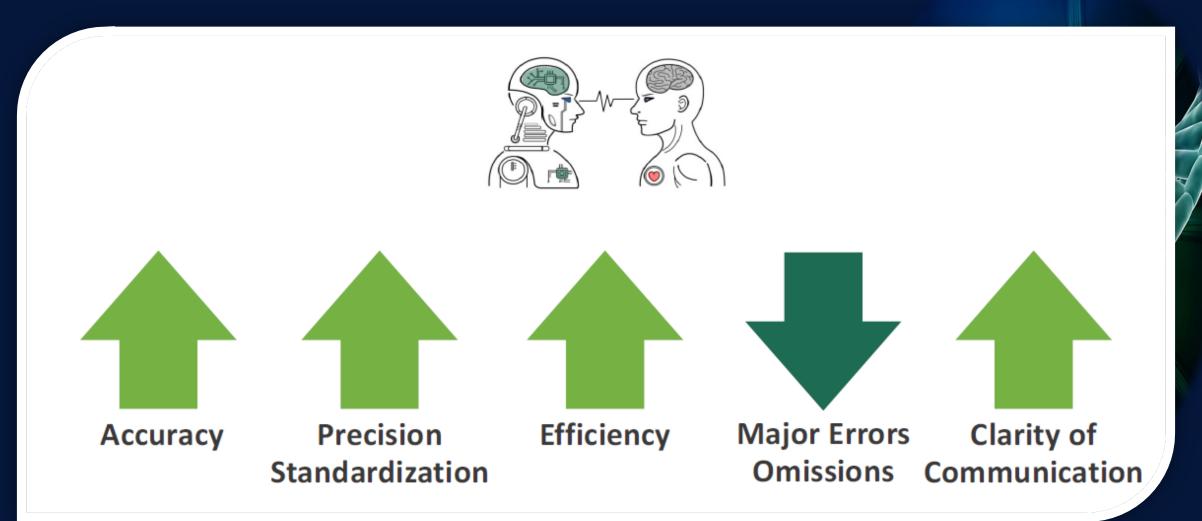

Intelligence Tool


Jean Marie Grouin, PhD • Pierre Fillard, PhD

Improving Breast Cancer Detection Accuracy of Mammography with the Concurrent Use of an Artificial

Serena Pacilè, PhD • January Lopez, MD • Pauline Chone, MPhil • Thomas Bertinotti, MSc •

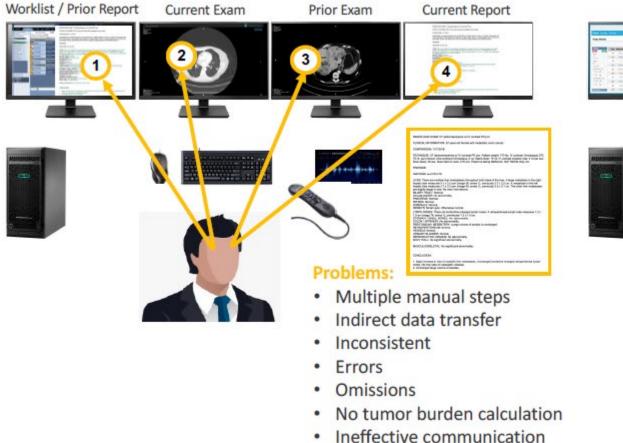
WHAT IS AUGMENTED INTELLIGENCE?



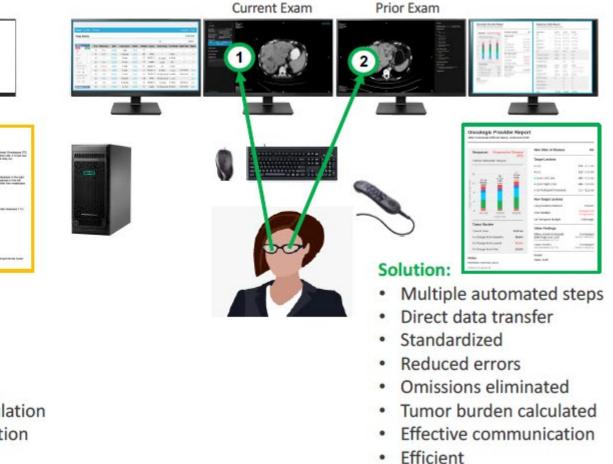
ARTIFICIAL INTELLIGENCE (AI)

Incorporating human intelligence into machines AUGMENTED AI Use of artificial intelligence to improve human performance

Credit Dr. Andrew Smith 63


GOALS OF AUGMENTED AI

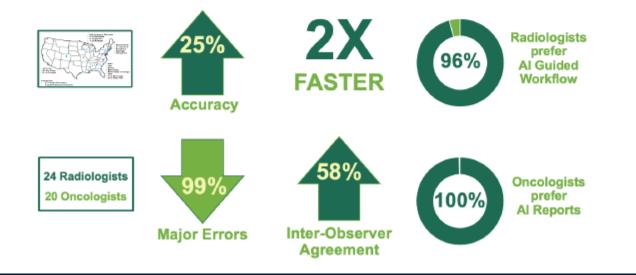
Credit Dr. Andrew Smith 64


STANDARD OF CAREVS AUGMENTED INTELLIGENCE

Standard of Care

Inefficient

Augmented Intelligence



AUGMENTED INTELLIGENCE FOR ADVANCED CANCER

ETT (TAN 10) - DRIVER DRIVEN (D) - REPORT DRIVER (D) - REPORT DRIVER (D) - REPORT DRIVER (D) - REPORT

> nanay Nanay Nanay Nanay

Clinical Value:

- Reduces errors / omissions
- Improves accuracy / reporting

Simplicity:

• Fully integrated but requires training and change management

ROI:

- New income for clinical trials
- Increased radiologist efficiency

"If you're teaching today what you were five years ago; either the field is dead or you are."

-- Noam Chomsky

AI STANDARDS AND ADOPTION FUTURE TRENDS AND INNOVATIONS

Evidence

Equity

Sustainability

Policy

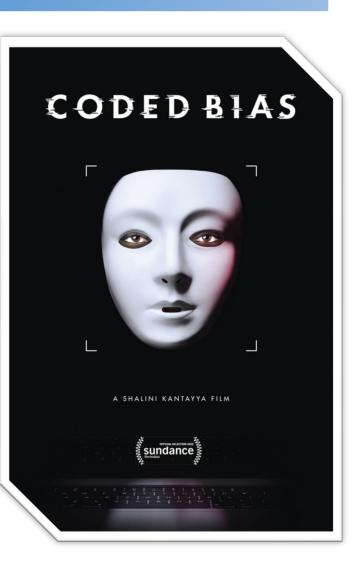
Education

"People Analytics" and Large Scale Databanks: Blurring the Boundaries Between Medical Research, Clinical Care and Daily Life

- every monitored event (clinical and nonclinical) is a potential data point
- every individual is a data node
- every individual is a research asset
- every individual is their own control

21st century curricular emphasis

- Knowledge capture and curation: Teaching students to distinguish between information and knowledge.
 Stresses knowledge capture and curation not information retention.
- Deep understanding of probabilistic reasoning: understanding probabilities and communicating and applying them meaningfully
- Collaboration with and management of AI applications
- Cultivation of empathy and compassion

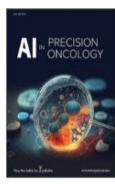

CURRENT LIMITATIONS AND CHALLENGES

Healthcare Algorithms Are Biased, and the Results Can Be Deadly

Deep-learning algorithms suffer from a fundamental problem: They can adopt unwanted biases from the data on which they're trained. In healthcare, this can lead to bad diagnoses and care recommendations.

A US government study confirms most face recognition systems are racist

TANGIBLE BENEFITS AND ROI



Contrary to fears that machines will replace human workers, AI in healthcare may help "re-humanize" healthcare

ABOUT THIS JOURNAL - EXPLORE CONTENT - FOR AUTHORS ALERTS ADVERTISE -

Al in Precision Oncology

Editor-in-Chief: Douglas Flora, MD ISSN: 2993-091X | Online ISSN: 2993-0928 | Published Bimonthly

The only peer-reviewed research journal dedicated to the advancement of artificial intelligence applications in clinical and precision oncology

View Aims & Scope Editorial Board

Search	Q
Recommend This Title	~
Sign Up for TOC Alerts	
View Submission Instructions	1
Share with a Colleague	4

Featured Content Abou Publ

About This Publication Editorial Board Reprints & Permissions News Releases

AI IN PRECISION ONCOLOGY JOURNAL

- Be a Guest Editor
- Submit a Feature Paper
- Submit Research and Review Papers
- Seeking National & International Board Members

Contact: Kathryn Ryar

krvan@liebertpub.com

Mary Ann Liebert, Inc., publishers 914-740-2100

FOR IMMEDIATE RELEASE FROM MARY ANN LIEBERT, INC., PUBLISHERS

Evaluating AI-Based Nodal Contouring in Head and Neck Cancer

New Rochelle, NY, February 8, 2024—A new study evaluates an artificial intelligence (AI)-based algorithm for autocontouring prior to radiotherapy in head and neck cancer. Manual contouring to pinpoint the area of treatment requires significant time, and an A lajorithm to enable autocontouring has been introduced. The study is published in the peer-reviewed journal AI in Precision Oncology. <u>Click here to</u> read the article now.

Sushil Beriwal, from Allegheny Health Network, and Varian, and coauthors, analyzed 108 patients with head and neck cancers. The automated nodal contours were evaluated using a 4-point scale: a score of 4 was clinically usable with no edits; a score of 3 required minor edits; a score of 2 required major edits; and a score of 1 required complete re-contouring of the region.*

The mean score for autocontouring was 3.56 +/- .40.

"Overall, the AI segmented autocontouring performed well with significant time saving and were clinically usable with no or minor edits the majority of times," concluded the investigators."

"The recent findings underscore the efficiency and reliability of AI in enhancing radiotherapy planning for head and neck cancer. With autocontouring algorithms demonstrating clinically usable results in the majority of cases, we're at the brink of a majori shift in treatment preparation. This advancement not only promises significant time savings for healthcare professionals but also opens the door to potentially more precise and patient-specific treatments. As we move forward, the integration of AI into oncological care represents a pivotal step towards more streamlined and effective patient care," says **Douglas Flora, MD**, Editor-in-Chief of AI in Precision Oncology. You've read the inaugural issue...

make sure you have access to all the incredible content coming in 2024

▶ PRECISION ONCOLOGY

m cutting-edge research and reviews to dynamic commentary and perspectives, <u>AI in</u> cision Oncology provides the tools to enable AI's responsible and effective use in ology for the benefit of healthcare providers and patients.

can't afford to miss a minute of the incredible content coming soon. Make sure have access by <u>asking your library to subscribe today</u>.

In Precision Oncology is more than a scientific or medical journal; it is a sion-driven initiative to harness the power of AI in improving oncology care. aim to shape an AI-enabled health care system that is equitable, efficient, and ant centered – making health care more human." Douglas Flora, Editor-in-Chief

Ask Your Library to Subscribe

© 2024 Mary Ann Liebert, Inc., publishers. All Rights Reserved

140 Huguenot Street, 3rd Floor, New Rochelle, NY, 10801-5215, USA

Refine your email preferences: Liebert Connect

DIATE RELEASE RY ANN LIEBERT, INC., PUBLISHERS

Contact: Kathryn Ryan Mary Ann Liebert, Inc., publishers 914-740-2100 kryan@iebertpub.com

Evaluating AI-Based Nodal Contouring in Head and Neck Cancer

helle, NY, February 8, 2024—A new study evaluates an artificial intelligence (AI)-based algorithm ntouring prior to radiotherapy in head and neck cancer. Manual contouring to pinpoint the area of requires significant time, and an AI algorithm to enable autocontouring has been d. The study is published in the peer-reviewed journal *AI in Precision Oncology*. <u>Click here to</u> <u>article now</u>.

riwal, from Allegheny Health Network, and Varian, and coauthors, analyzed 108 patients with neck cancers. The automated nodal contours were evaluated using a 4-point scale: a score of 4 ally usable with no edits; a score of 3 required minor edits; a score of 2 required major edits; and f 1 required complete re-contouring of the region."

score for autocontouring was 3.56 +/- .40.

he AI segmented autocontouring performed well with significant time saving and were clinically th no or minor edits the majority of times," concluded the investigators."

nt findings underscore the efficiency and reliability of AI in enhancing radiotherapy planning for neck cancer. With autocontouring algorithms demonstrating clinically usable results in the f cases, we're at the brink of a major shift in treatment preparation. This advancement not only significant time savings for healthcare professionals but also opens the door to potentially more d patient-specific treatments. As we move forward, the integration of AI into oncological care s a pivotal step towards more streamlined and effective patient care," says **Douglas Flora, MD**, Chief of *AI in Precision Oncology*.

ue Now Available

uglas Flora, MD

ology is more than a scientific or medical n-driven initiative to harness the power of plogy care. We aim to shape an AI-enabled that is equitable, efficient, and patient pealth care more human." – Dr. Douglas

nnounce the publication of the inaugural issue of *Al in Precision Oncology*. , with free access available until February 28th:

PRECISIO

ecision Oncology <u>d Now</u>

I Intelligence in Precision Oncology: An Interview with Eric Topol as Flora Read Now

ouglas B. Flora, MD Damian Doherty <u>Read Now</u>

ng!" Phenomics and Hyperscale AI for Health Care ^{Penberthy} <u>Read Now</u>

elligence? An Insight for Oncologists

for Generative Artificial Intelligence in Clinical Oncology Contexts *likhil G. Thaker* <u>Read Now</u>

e Papers: The Future of Cancer Screening—Leveraging AI and Precision Oncology cheamy Read Now

e Papers: Ethics and Regulation of Al in Precision Oncology Hills Grois Read Now

Easter Parades in New York City

Year 1900: One Motor Vehicle Year 1913: One Horse & Carriage

Change is accelerating

Stay alert & engaged

Be open to possibilities

...and buckle up!

The future is bright!

Thank you!

THANK YOU!

dp4j@uvahealth.org

https://home.liebertpub.com/publications/aiin-precision-oncology/679

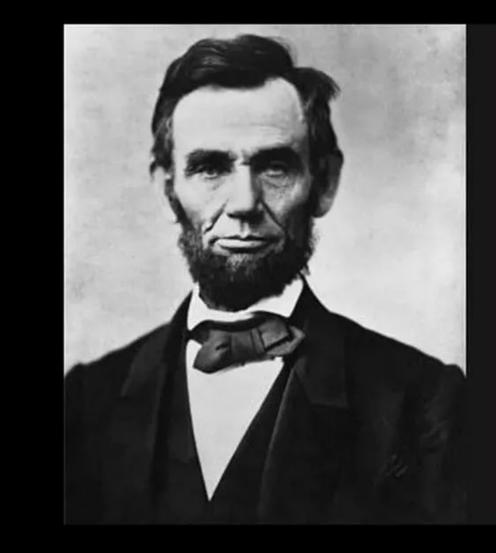
 \mathbf{G}

David R. Penberthy, MD MBA

David Penberthy

@drpenberthy

@drpjkp



References

- 1. Jakubowski DM, Bailey H, Abran A, et al. Molecular characterization of breast cancer needle core biopsy specimens by the 21-gene Breast Recurrence Score test. *J Surg Oncol*. 2020;122(4):611-618. doi: 10.1002/jso.26050
- 2. Li MM, Datto M, Duncavage EJ, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: A joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. *J Mol Diagn*. 2017;19(1):4-23. doi: 10.1016/j.jmoldx.2016.10.002
- 3. Li K, Lou H, Huang L, et al. Microsatellite instability: a review of what the oncologist should know. *Cancer Cell Int*. 2020;20:16. doi: 10.1186/s12935-019-1091-8
- 4. Brauns J, Pauwels P. Tumor mutational burden: a review. *Belg J Med Oncol*. 2020;14(1):4-7. https://www.bjmo.be/journal-article/tumour-mutational-burden-a-review/
- 5. Albain KS, Zlobin AY, Covington KR, et al. Identification of a notch-driven breast cancer stem cell gene signature for anti-notch therapy in an ER+ presurgical window model. 2014 San Antonio Breast Cancer Symposium. 2014; San Antonio, Texas.
- 6. Colomer R, Mondejar R, Romero-Laorden N, et al. When should we order a next generation sequencing test in a patient with cancer? *EClinicalMedicine*. 2020;25:100487. doi: 10.1016/j.eclinm.2020.100487
- 7. IQVIA. Supporting precision oncology: targeted therapies, immuno-oncology, and predictive biomarker-based medicines. Published August 11, 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/supporting-precision-oncology
- 8. Torres GF, Bonilla CE, Buitrago G, et al. How clinically useful is comprehensive genomic profiling for patients with non-small cell lung cancer? A systematic review. *Crit Rev Oncol Hematol*. 2021;166:103459. doi: 10.1016/j.critrevonc.2021.103459
- 9. Chakravarty D, Johnson A, Sklar J, et al. Somatic genomic testing in patients with metastatic or advanced cancer: ASCO provisional clinical opinion. *J Clin Oncol*. 2022;40(11):1231-1258. doi: 10.1200/JCO.21.02767
- 10. Sarhadi VK, Armengol G. Molecular biomarkers in cancer. *Biomolecules*. 2022;12(8):1021. https://doi.org/10.3390/biom12081021
- 11. Pritchard D, Goodman C, Nadauld LD. Clinical utility of genomic testing in cancer care. *JCO Precis Oncol*. 2022;6:e2100349. doi: 10.1200/PO.21.00349
- 12. Ray T. Industry interest in pan-cancer indications growing with FDA support despite challenges. Published May 29, 2019. Accessed February 13, 2023. https://www.precisiononcologynews.com/cancer/industry-interest-pan-cancer-indications-growing-fda-support-despite-challenges#.Y-p523bMJD8
- 13. Pagliarulo N. Roche cancer drug the 3rd approved for pan-tumor use. Published August 15, 2019. Accessed February 13, 2023. https://www.biopharmadive.com/news/roche-rozlytrek-cancer-drug-approval-tumoragnostic/561027/#:~:text=Rozlytrek%2C%20as%20the%20drug%20will,another%20mutation%20known%20as%20ROS1.
- 14. U.S. Food & Drug Administration. FDA approves third oncology drug that targets a key genetic driver of cancer, rather than a specific type of tumor. Published August 15, 2019. Accessed February 13, 2023. https://www.fda.gov/news-events/press-announcements/fda-approves-third-oncology-drug-targets-key-genetic-driver-cancer-rather-specific-type-tumor
- 15. Liu R, Rizzo S, Whipple S, Pal N, et al. Evaluating eligibility criteria of oncology trials using real-world data and Al. *Nature*. 2021;592:629-633. https://www.nature.com/articles/s41586-021-03430-5
- 16. Benedum C, Adamson B, Cohen AB, et al. P57 machine learning-accelerated outcomes research: A real-world case study of biomarker-associated overall survival in oncology. *Value Health*. 2022;25(12):S13-S14. https://doi.org/10.1016/j.jval.2022.09.069

REFERENCES

- 1. American Cancer Society. Cancer facts & figures: 2019. Published 2019. Accessed August 15, 2022. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf
- 2. Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363-385. doi: 10.3322/caac.21565
- 3. Weir HK, Thompson TD, Stewart SL, et al. Cancer incidence projections in the United States between 2015 and 2050. *Prev Chronic Dis.* 2021;18:210006. doi: http://dx.doi.org/10.5888/pcd18.210006
- 4. American Cancer Society. Cancer facts & figures: 2022. Accessed August 15, 2022. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html
- 5. Yang W, Williams JH, Hogan PF, et al. Projected supply of and demand for oncologists and radiation oncologists through 2025: an aging, better-insured population will result in shortage. *J* Oncol Pract. 2014;10(1):39-45. doi: 10.1200/JOP.2013.001319
- 6. Google. Tacoma, Washington. Accessed August 16, 2022. https://www.google.com/maps/place/Tacoma,+WA/@47.3945599,-123.1267825,8.29z/data=!4m5!3m4!1s0x549054ee2b659567:0x62219c07ebb09e82!8m2!3d47.2528768!4d-122.4442906
- 7. Hale C. FDA clears Paige's AI as first program to spot prostate cancer in tissue slides. Published September 22, 2021. Accessed August 17, 2022. https://www.fiercebiotech.com/medtech/fda-clears-paige-s-ai-as-first-program-to-spot-prostate-cancer-amid-tissue-slides#:~:text=MedTech-,FDA%20clears%20Paige's%20AI%20as%20first%20program,prostate%20cancer%20in%20tissue%20slides&text=Tech%20companies%20have%20been%20questing,clearance%20to%20d o%20just%20that.
- 8. Moskowitz CS. Using free-response receiver operating characteristic curves to assess the accuracy of machine diagnosis of cancer. *JAMA*. 2017;318(22):2250-2251. doi: 10.1001/jama.2017.18686
- 9. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. *JAMA*.2016;316(22):2402-2410. doi:10.1001/jama.2016.17216
- 10. Pokaprakarn T, Prieto JC, Price JT, et al. AI estimation of gestational age from blind ultrasound in low-resource settings. *NEJM Evid*. 2022. doi: https://doi.org/10.1056/EVIDoa2100058
- 11. Golden JA. Deep learning algorithms for detection of lymph node metastases from breast cancer: helping artificial intelligence be seen. JAMA. 2017;318(22):2184-2186. doi: 10.1001/jama.2017.14580
- 12. Pacile S, Lopez J, Chone P, et al. Improving breast cancer detection accuracy of mammography with the concurrent use of an artificial intelligent tool. *Radiol Artif Intell*. 2020;2(6):e190208. doi: 10.1148/ryai.2020190208
- 13. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. *JAMA*.2017;318(22):2199-2210. doi:10.1001/jama.2017.14585
- 14. Ibex Medical Analytics. Prostate biopsy with cancer probability (blue is low, red is high). Published July 27, 2020. Accessed August 17, 2022. https://www.eurekalert.org/news-releases/558575
- 15. Indigo BioAutomation. Process, review, and release GC/LC-MS data. Accessed August 17, 2022. https://info.indigobio.com/ascent-demo
- 16. LeanTaaS, Becker's Hospital Review. How Novant Health optimized OR capacity to restore elective surgery & achieve stronger financial health. Accessed August 17, 2022. https://iqueue.leantaas.com/Beckers-Feb-23-2021-Community-Hospitals-Virtual-Forum_Registration.html
- 17. LeanTaaS. Unlocking healthcare capacity and access with technology and lean transformation. Accessed August 17, 2022. https://iqueue.leantaas.com/OR-manager-unlocking-healthcarecapacity-eBook-download.html
- 18. Epic. Homepage. Accessed August 17, 2022. https://www.epic.com/
- 19. Copan. PhenoMatrix[®]. Accessed August 17, 2022. https://www.copanusa.com/full-lab-automation-and-artificial-intelligence/phenomatrix/
- 20. Eon. Eon Blogs: Eon + Epic. Published February 11, 2021. Accessed August 17, 2022. https://eonhealth.com/blog/eonepic/#:~:text=Eon%20is%20a%20powerful%20supplement%20to%20Epic.&text=The%20Eon%20solution%20incorporates%20high,and%20achieve%20documented%20patient%20outco mes.
- 21. Access Intelligence, LLC. ORManager. Accessed August 17, 2022. https://www.ormanager.com/
- 22. Michele Doying, The Verge. A doctor explains how artificial intelligence could improve the patient-doctor bond. Published March 12, 2019. Accessed August 12, 2022. https://www.theverge.com/2019/3/12/18261718/eric-topol-deep-medicine-artificial-intelligence-algorithms-health-science-interview

"Don't believe everything you read on the Internet just because there's a picture with a quote next to it."

-Abraham Lincoln

