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Outline — Two parts

= Part | —The significance of explainable Al in biomedical sciences
= Demystifying the biological age
* Unveiling neurodegenerative disease insights with explainable Al

= Part 2 — Advancing beyond explaining models
= Cancer therapy design for precision oncology
= Model auditing
= Cost-aware clinical Al



Explainable Al (XAI): Accurately predicting an outcome
is vital, but the critical question revolves around why.
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Lundberg et al. Nature Machine Intelligence, 2020 — Featured on the Cover Beebe-Wang et al. IEEE JBHI, 2021
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Our solution is to fundamentally advance Al
research to make a prediction with explanations

= Accuracy vs. interpretability
= Simple models often lead to lower performance.
* Complex models are often considered to be a black box.

Our approach, SHAP
Linear model Complex model f (.) (SHapley Additive exPlanations)
X: Features Y: Outcome Black Box For a particular prediction

X

SHAP can estimate feature importance
for a particular prediction for any model.

Lundberg & Lee. Neural Information Processing Systems (NeurlPS) Oral (Dec 2017) — Cited 20,000+ times



Collaboration with UW Nephrology

Explainable Al (XAI): Accurately predicting an outcome
is vital, but the critical question revolves around why.
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UW Nathan Shock Center for Basic Biology of Aging (Al Core Director role)

XAl for interpretable biological age
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UW Nathan Shock Center for Basic Biology of Aging (Al Core Director role)

Explainable Al for interpretable biological age
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ENABL age paper is now featured on the cover of
Lancet Healthy Longevity.

THE LANCET
Healthy Longevity

4 < hise 12 - Decormber 2023

= Please check it out!

THE LANCET

Healthy Longevity Log in

FEATURE

ENABL Age: an Al framework for biological age

Health Policy

ENABLAge: an Al fr. foe Inchusion of frail older adults in
biological age <Enical trials
Soepagee7il Seepageelds

-\ Wei, CSE PhD



Alzheimer’s disease (AD)

= 6" most common cause of death in the US

* No long-term effective therapy exists to delay or prevent onset of progression

= AD lacks effective treatments due to limited understanding of early cellular
pathways leading to end-stage pathologies like amyloid-f (AB) and tau.

Severe AD

ﬁ(( W l
%?

Amyloid-
(AB)




Collaboration with Sara Mostafavi (UW)

The key question is the mechanistic explanation
of complex neuropathological phenotypes

Postmortem
brain Features X
; RNAseq
ACT
ATAC
(n=337) >ed
M_SBB793 Demographic
(n=879) Data
ROSMAP Clinical
(n=542) data

Neurobiologists

Beebe-Wang et al. Nature Communications, 2021
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Outcomes Y

Neuropathological
phenotypes:

Y AB, Tau, CERAD score,
Plagque counts, Braak
stage, tangle counts

= Advantages

" No need to harmonize
phenotypes across cohorts

Why?!

= Ability to capture complex,
non-linear gene-phenotype

relationships
¥ | " Nicasia, CSE PhD"22



Collaboration with Sara Mostafavi (UW)

Explainable Al (XAl) enhances neurodegenerative
disease research in multiple ways

" Our robust model trained across multiple cohorts was successfully validated, even in

mouse brain and human blood datasets

‘
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Beebe-Wang et al. Nature Communications, 2021

= Using XAl, we can estimate each gene’s
contribution to AD neuropathologies

= Previously unknown sex-specific
associations btw. immune response genes
and AD neuropathologies

(plaque counts)

Janizek et al. Nature Biomedical Engineering, 2023



‘ Collaboration with Sara Mostafavi (UW)

Explainable Al (X xal may capture patterns related to

disease research| sex-differential microglia activity.
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contribution to AD neuropathologies

= Previously unknown sex-specific
associations btw. immune response genes
and AD neuropathologies

(plaque counts)

Beebe-Wang et al. Nature Communications, 202 | Janizek et al. Nature Biomedical Engineering, 2023



Biologically interpretable Al modeling further
advances data-driven discovery

(A) Concept layer (pathways)

* [ndividual genes are not as interpretable as Sparse modules

functional units (e.g., pathway)

= Unsupervised modeling enables the \\\ — O

incorporation of unlabeled data il
= XAl can pinpoint crucial genes that explain the A "”'.: - O

expression variation within the dataset
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Janizek et al. Genome Biology, 2023 || Joe, UW MSTP/CSE PhD’22 (Matched in Radiology at Stanford)
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Collaboration with UW Laboratory Medicine & Pathology (Matt Kaeberlein)

Biologically interpretable modeling identifies
experimentally validated AD therapeutic targets

(A) Concept layer (pathways)
Sparse modules

" We applied our approach to extended bulk
RNAseq datasets from AD study cohorts

" We identified mitochondrial complex | as a
potential mediator for tolerance to AP toxicity

= In vivo validation in a transgenic C. elegans model
expressing AB done by Matt Kaeberlein’s lab

A promising pharmacological avenue!

Additional covariates

(B) Attribute reconstruction (€) Attribute pathway outputs
Capsaicin ~ loss to pathways to input genes

"\2/\0/

Janizek et al. Genome Biology, 2023



Contrastive modeling enhances interpretability

state between background cells and those under specific treatments

(A)

Contrastive Analysis

Background + Target
Healthy Unhealthy
Tissue Tlssue
Control m Treatment ?
Group 2 Group
Unedited Perturbed 9
Genome Genome

Weinberger,* Lin,* and Lee. Nature Methods, 2023
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= Single-cell datasets are often collected to investigate differences in cellular
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Contrastive modeling enhances interpretability

m Cancer cells treated with idasanutlin vs.

untreated as background

= Cells behave differently in salient space
depending on their TP53 mutation status

Important implications for
personalized medicine!

= How about AD vs. control brain tissue?

* What drives neurodegeneration (in
collaboration with Jessica Young)

= What drives biological aging process!?
(Jessica Young & Suman Jayadev)

Weinberger,* Lin,* and Lee. Nature Methods, 2023
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Outline — Two parts

* Part | —What explainable Al can do in biological research
= Demystifying the biological age
* Unveiling neurodegenerative disease insights with explainable Al

= Part || — Beyond explaining models
= Cancer therapy design for precision oncology
= Model auditing
= Cost-aware clinical Al



Beyond interpreting models...

— Cancer therapy design for precision oncology
[Nature BME'23]

— Al auditing [Nature Mr21, Nature BUE'23, Nature Medicine’24]

radiology, dermatology

— Cost-aware clinical Al [Nature BME22]

emergency medicine, critical medicine



B Collaboration with Harvard Medical School (Kamila Naxerova)

Explalnable Al to design cancer therapy

* Choosing drugs tha== = ays

= Greater efficacy

= Fewer side-effects

* Choosing optimal ¢

= Explanations to thy ortant
Hundreds of )\%5 , i Eadlologg i \ HHH ”HHHH
s ) N ~_OH - - fq
individual drugs ﬁ at: L, ﬁy n AAAA

AML Gene Expression

A
\p/ 6 MSTP/CSE PhD’22 (got matched
" Sl to Stanford Radiology)

Janizek et al. Nature Biomedical Engineering, 2023  Lee*, Celik*, et al. Nature Comm., 2018

irs of Drugs




B Collaboration with Harvard Medical School (Kamila Naxerova)

Explainable Al to design cancer therapy
= EXPRESS: Explainable prediction of drug synergy

100%

Predicted 75%1
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Drug dose
AML Gene Expression
Y
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Janizek et al. Nature Biomedical Engineering, 2023  Lee*, Celik*, et al. Nature Comm., 2018



Collaboration with Harvard Medical School (Kamila Naxerova)

Interpretability allows us to validate

our model’s decisions
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Janizek et al. Nature Biomedical Engineering, 2023
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Collaboration with Harvard Medical School (Kamila Naxerova)

Interpretability uncovers transcription programs
underlying drug synergy
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Collaboration with Harvard Medical School (Kamila Naxerova)

Interpretability uncovers transcription programs
underlying drug synergy
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“Stemness” can be considered as an “axis” to design
combination therapies — Two drugs that target different
differentiation stages of cancer are likely effective.
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Janizek et al. Nature Biomedical Engineering, 2023  Lee*, Celik*, et al. Nature Comm., 2018



Beyond interpreting models...

— Cancer therapy design for precision oncology
[Nature BME'23]

— Al auditing [Nature Mr21, Nature BUE'23, Nature Medicine’24]

radiology, dermatology

— Cost-aware clinical Al [Nature BME22]

emergency medicine, critical medicine



Auditing Al for COVID-19 detection using XAl

= Many published Al models that detect COVID-19 ™ e

XAl helped us to stop the field from moving in the wrong

direction - There were 6 published papers and hundreds of related
models out there that learned the shortcuts.

Many kinds of analyses for model
auditing presented in the paper!

T 0.2 06

External: 0.76 + 0.04

0.0

00 02 04 06 08 1.0

v/ Clear lung bases predict negative COVID-19 status
X laterality markers should not predict negative status

X medical devices should not predict negative status
MSTP / CSE PhD
Oth s RN




Our Al auditing work featured in Nature

= “Breaking into the black box of artificial intelligence” Nature Outlook

Breaking into the black box of
artificial intelligence L Uw MSTP /
S CSE PhD
e Joe Janizek
(residency
at Stanford)

UW MSTP/CSE PhD
student Alex Degrave

Alex DeGrave and Joseph Janizek are students on the Medical Scientist Training Program at the University

of Washington, in Seattle. Credit: Alex DeGrave

DeGrave,* Janizek™ et al. Nature Machine Intelligence, 2021 Cited 440+, Featured in Nature, 2022




Collaboration with Stanford Dermatology (Roxana Daneshjou)

Further digging into the flaws in the reasoning
processes of clinical Al — dermatology

= Auditing Al models to predict skin cancer ,
= Five models — 2 academic models, 2 commercial devices, and W
| competition winner : [j v

" Technical challenges — saliency maps often do not work

Original image Saliency map Modified image Our solution #1

= Generate counterfactual images

:?, ‘ from the Al model
o = Systematic characterization by

experts: Drs. Roxana Daneshjou,
and Zhuo Ran Cai (Stanford)

DeGrave et al. (Nature Biomedical Engineering)
Predicted: benign Predicted: malignant  Kim et al. (Nature Medicine, 2024)



Collaboration with Stanford Dermatology (Roxana Daneshjou)

How do dermatology Al systems make decisions
on dermoscoplc images!
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The Lancet perspective
(Feb 2024)

* Broader promises of
counterfactual Al

“The clinical potential of
counterfactual Al”

by Su-In Lee* and Eric Topol

Digital medicine

The clinical potential of counterfactual Al models

Clinicians  frequently use conditional reasoning for
treatment decisions by envisioning potential outcomes for
patients. This is counterfactual thinking, exploring “what if”
scenarios. Developments in generative artificial intelligence
(Al) enable us to simulate this patient-level reasoning at
the data level, opening new opportunities for science and
health care. We term this approach counterfactual Al.

This approach is exemplified by use of counterfactual
images in dermatology. Using Al, original skin images were
modified to resemble melanoma guided by the decision-
making process of a particular Al-based dermatological
classifier. Dermatologists were then tasked with identifying
clinically relevant features in the counterfactual images of
melanoma and normal conditions. This process elucidated
the reasoning processes of five Al-based dermatological
classifiers. This data-centric counterfactual Al aligns the
reasoning processes of Al classifiers with human clinicians’
intuition, establishing a new approach to auditing clinical
Al classifiers. Model auditing provides insights into the
performance of deployed clinical Al classifiers for patients,
clinicians, regulators, and data scientists.

Such uses of counterfactual Al prompt a crucial question:
how might patient data change under specific conditions
such as genetic mutations, treatments, time, or ageing?
This exploration leads to intriguing scenarios, including
forecasting the progression of clinical images or other
data types over time for a particular treatment, potentially
providing prognostic insights, or simulating the impact of
genetic mutations to enhance our comprehension of disease
mechanisms and treatment outcomes. This could present
a frontier for future research. For example, personalised
T-cell receptor sequence design for immunotherapy offers
possibilities for new treatment strategies. Moreover,
counterfactual Al has the potential to fill data gaps for
rare diseases or under-represented groups, aiding the
development of more inclusive and comprehensive health-
care solutions. Furthermore, counterfactual Al could
spur innovation in scientific hypothesis generation for
drug discovery and development, potentially leading to
breakthroughs in urgent areas such as Alzheimer’s disease.
Research suggests it could generate data on specific
pathological conditions and conduct in-silico synthetic
lethality testing for novel combination therapies.

An unexpected synergy is emerging as data-centric
counterfactual Al contributes to the interpretation and
auditing of clinical Al models. There are challenges in
understanding the decision-making processes of many Al
models. Saliency maps or, more broadly, feature attribution
methods, are commonly used for model interpretation,
indicating the areas of an image (or other data types) that the

Al model focuses on (figure). Yet they provide only a partial
view of the inner workings of complex Al models, impeding
efforts to identify flaws in clinical Al reasoning processes.
Counterfactual Al expands the scope of explainable Al by
providing counterfactual images that elicit specific outcome
predictions from complex Al classifiers (figure), enabling
humans to grasp more comprehensive insights into the
reasoning processes of these classifiers. Collaborating with
clinicians, counterfactual Al could unearth previously un-
noticed image attributes. Research indicates that by partner-
ing with Al methods capable of automatically annotating
images with an array of semantically meaningful concepts,
counterfactual Al can systematically probe Al classifiers about
how these concepts affect their decision-making processes.

Counterfactual Al in medicine faces ethical concerns and
challenges related to faimess, data quality, and generali-
sability. Obtaining high-quality, diverse datasets is difficult.
Generalising to new data is also problematic, particularly
across diverse patient populations and health-care settings.
Moreover, ethical and regulatory issues, including patient
privacy concerns about the use of training data, must be
addressed to ensure responsible Al deployment in health care.

What should we do to fully leverage the potential of
counterfactual Al to advance scientific and therapeutic
discovery? Generative Al operates through complex models
that necessitate explanation. The reciprocal relation
between generative Al and explainable Al is essential:
generative Al informs the development of explainable Al;
explainable Al aids in understanding generative Al models.
By focusing on these principles, we can ensure that “what
if” Al models are transparent and interpretable, facilitating
their effective use in biomedical endeavours.

*Su-In Lee, EricJ Topol

Paul G Allen School of Computer Science & Engineering, University
of Washington, Seattle, WA 98195, USA (S-IL); Scripps Research
Translational Institute, La Jolla, CA, USA (EJT)
suinlee@cs.washington.edu
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Further reading

DeGrave AJ, Cai ZR, Janizek JD,

Daneshjou R, Lee SI. Auditing the

inference processes of medical-
image classifiers by leveraging
generative Al and the expertise
of physicians. Nat Biomed Eng
2023; published online Dec 28.
https://doi.org/10.1038/
541551-023-01160-9

DeGrave A, Janizek JD, Lee SI.
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detection selects shortcuts over

signal. Nat Mach Intell 2021;

3:610-19

Kim C, Gadgil SU, DeGrave A},
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(in press)
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Figure: Auditing dermatology Al model with counterfactual Al

A saliency map indicates little about an Al system for detecting melanoma, whereas counterfactual Al reveals that

the system relied on the colour and pattern of pigmentation to determine that this lesion is benign.

Su-In Lee, Alex DeGrave



Collaboration with Stanford Dermatology (Roxana Daneshjou)

Fostering transparent Al via an image-text
foundation model grounded in medical literature

* Finetune the CLIP (contrastive

= Automatic concept annotation:
language-image pretraining) model
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Beyond interpreting models...

— Cancer therapy design for precision oncology
[Nature BME'23]

— Al auditing [Nature Mr21, Nature BUE'23, Nature Medicine’24]

radiology, dermatology

— Cost-aware clinical Al [Nature BME22]
emergency medicine, critical medicine



Collaboration with UW Emergency Medicine (Nathan White)

Explainable Al enables “cost-aware” Al (CoAl)

One year ago ...

e
5
.

e

Erion et al. Nature Biomedical Engineering, 2022 - Featured in Nature Comp. Science, 2022

ST

P
Gabe, MSTP/CSE PhD’21

(now Harvard for
residency in EM)




Collaboration with UW Emergency Medicine (Nathan White)

Explainable Al enables “cost-aware” Al (CoAl)

* Gathering features is often costly. (e.g., time, money, etc)

= Acute traumatic coagulopathy (ATC), a dangerous bleeding
disorder in trauma patients (failure to clot)

= ATC is time sensitive — often requires massive transfusion and
earlier transfusion leads to better outcomes

" |n collaboration with Nathan White, we used our trauma registry dataset

= [4,000 emergency room visits and 46 features from the trauma registry of Harborview
Medical Center, an urban level-l trauma centre

* CoAl combines XAl-based feature importance with feature cost (time) &
. A
Gabe, MSTP/CSE PhD’21

(now Harvard for
Erion et al. Nature Biomedical Engineering, 2022 - Featured in Nature Comp. Science, 2022 residency in EM)

= Time cost survey from clinicians, medical directors, EMTs, etc



Collaboration with UW Emergency Medicine (Nathan White)

Explainable Al enables “cost-aware” Al (CoAl)

* CoAl improves both cost & accuracy
= As accurate as the existing PACT score with <| mins (vs. 8 mins) of feature gathering time

a)Trauma: CoAl outperforms PACT score b) ICU: CoAl outperforms mortality scores
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9 O 0.85 1
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: 22| x clinical risk scores when
S 0.76 - S 0.65 - .
E ;:Zé!r Cost 8 0.60 - —— CoAl aPPIIed tO ICU
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§ 0.72 - % CoAl: PACT Cost = APACHE IIl Score

CoAl: EMT Cost 0.50 X QaSOFA
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Model Cost (Minutes) Model Cost (# Features)

Erion et al. Nature Biomedical Engineering, 2022 - Featured in Nature Computational Science, 2022



Explainable Al for biomedical sciences & beyond

Medicine & healthcare Cancer biology & precision | | Alzheimer’s disease

anesthesia care, emergency medicine, medicine therapeutic target discovery
critical care, nephrology, dermatology

& biological age

Developing explainable Al principles techniques

ML model Black Box Explanation priors

Learn interpretable features Make interpretable predictions Learn explainable models

Clinical medicine Basic biology

, , ’ , Nature Medicine, 2024; Lancet, 2024; Nature
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